Pushable chromatic number of graphs with degree constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00121466" target="_blank" >RIV/00216224:14330/21:00121466 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.disc.2020.112151" target="_blank" >https://doi.org/10.1016/j.disc.2020.112151</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2020.112151" target="_blank" >10.1016/j.disc.2020.112151</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pushable chromatic number of graphs with degree constraints
Popis výsledku v původním jazyce
Pushable homomorphisms and the pushable chromatic number chi(p) of oriented graphs were introduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented graph (G) over right arrow, we have chi(p)((G) over right arrow) =.o((G) over right arrow) = 2 chi(p)((G) over right arrow), where chi(p)((G) over right arrow) denotes the oriented chromatic number of -. G. This stands as the first general bounds on chi(p). This parameter was further studied in later works. This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular degree conditions. For all Lambda >= 29, we first prove that the maximum value of the pushable chromatic number of a connected oriented graph with maximum degree. lies between 2 Delta/2-1 and (Lambda- 3) center dot (Lambda- 1) center dot 2(Delta-1) + 2 which implies an improved bound on the oriented chromatic number of the same family of graphs. For subcubic oriented graphs, that is, when Delta <= 3, we then prove that the maximum value of the pushable chromatic number is 6 or 7. We also prove that the maximum value of the pushable chromatic number of oriented graphs with maximum average degree less than 3 lies between 5 and 6. The former upper bound of 7 also holds as an upper bound on the pushable chromatic number of planar oriented graphs with girth at least 6. (c) 2020 Published by Elsevier B.V.
Název v anglickém jazyce
Pushable chromatic number of graphs with degree constraints
Popis výsledku anglicky
Pushable homomorphisms and the pushable chromatic number chi(p) of oriented graphs were introduced by Klostermeyer and MacGillivray in 2004. They notably observed that, for any oriented graph (G) over right arrow, we have chi(p)((G) over right arrow) =.o((G) over right arrow) = 2 chi(p)((G) over right arrow), where chi(p)((G) over right arrow) denotes the oriented chromatic number of -. G. This stands as the first general bounds on chi(p). This parameter was further studied in later works. This work is dedicated to the pushable chromatic number of oriented graphs fulfilling particular degree conditions. For all Lambda >= 29, we first prove that the maximum value of the pushable chromatic number of a connected oriented graph with maximum degree. lies between 2 Delta/2-1 and (Lambda- 3) center dot (Lambda- 1) center dot 2(Delta-1) + 2 which implies an improved bound on the oriented chromatic number of the same family of graphs. For subcubic oriented graphs, that is, when Delta <= 3, we then prove that the maximum value of the pushable chromatic number is 6 or 7. We also prove that the maximum value of the pushable chromatic number of oriented graphs with maximum average degree less than 3 lies between 5 and 6. The former upper bound of 7 also holds as an upper bound on the pushable chromatic number of planar oriented graphs with girth at least 6. (c) 2020 Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics
ISSN
0012-365X
e-ISSN
1872-681X
Svazek periodika
344
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000588280100003
EID výsledku v databázi Scopus
2-s2.0-85092085767