Majority colorings of sparse digraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00125298" target="_blank" >RIV/00216224:14330/21:00125298 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.37236/10067" target="_blank" >http://dx.doi.org/10.37236/10067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/10067" target="_blank" >10.37236/10067</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Majority colorings of sparse digraphs
Popis výsledku v původním jazyce
A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority 4-coloring and conjectured that every digraph admits a majority 3-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most 6 or dichromatic number at most 3, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most 4. The benchmark case of r-regular digraphs remains open for r is an element of[5, 143]. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-3-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority (2 + epsilon)-coloring.
Název v anglickém jazyce
Majority colorings of sparse digraphs
Popis výsledku anglicky
A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority 4-coloring and conjectured that every digraph admits a majority 3-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most 6 or dichromatic number at most 3, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most 4. The benchmark case of r-regular digraphs remains open for r is an element of[5, 143]. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-3-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority (2 + epsilon)-coloring.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000670355400001
EID výsledku v databázi Scopus
2-s2.0-85107211371