Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Majority colorings of sparse digraphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00125298" target="_blank" >RIV/00216224:14330/21:00125298 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.37236/10067" target="_blank" >http://dx.doi.org/10.37236/10067</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37236/10067" target="_blank" >10.37236/10067</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Majority colorings of sparse digraphs

  • Popis výsledku v původním jazyce

    A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority 4-coloring and conjectured that every digraph admits a majority 3-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most 6 or dichromatic number at most 3, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most 4. The benchmark case of r-regular digraphs remains open for r is an element of[5, 143]. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-3-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority (2 + epsilon)-coloring.

  • Název v anglickém jazyce

    Majority colorings of sparse digraphs

  • Popis výsledku anglicky

    A majority coloring of a directed graph is a vertex-coloring in which every vertex has the same color as at most half of its out-neighbors. Kreutzer, Oum, Seymour, van der Zypen and Wood proved that every digraph has a majority 4-coloring and conjectured that every digraph admits a majority 3-coloring. They observed that the Local Lemma implies the conjecture for digraphs of large enough minimum out-degree if, crucially, the maximum in-degree is bounded by a(n exponential) function of the minimum out-degree. Our goal in this paper is to develop alternative methods that allow the verification of the conjecture for natural, broad digraph classes, without any restriction on the in-degrees. Among others, we prove the conjecture 1) for digraphs with chromatic number at most 6 or dichromatic number at most 3, and thus for all planar digraphs; and 2) for digraphs with maximum out-degree at most 4. The benchmark case of r-regular digraphs remains open for r is an element of[5, 143]. Our inductive proofs depend on loaded inductive statements about precoloring extensions of list-colorings. This approach also gives rise to stronger conclusions, involving the choosability version of majority coloring. We also give further evidence towards the existence of majority-3-colorings by showing that every digraph has a fractional majority 3.9602-coloring. Moreover we show that every digraph with large enough minimum out-degree has a fractional majority (2 + epsilon)-coloring.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    000670355400001

  • EID výsledku v databázi Scopus

    2-s2.0-85107211371