Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improved bounds for centered colorings

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00136005" target="_blank" >RIV/00216224:14330/21:00136005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.19086/aic.27351" target="_blank" >https://doi.org/10.19086/aic.27351</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.19086/aic.27351" target="_blank" >10.19086/aic.27351</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improved bounds for centered colorings

  • Popis výsledku v původním jazyce

    A vertex coloring φ of a graph G is p-centered if for every connected subgraph H of G either φ uses more than p colors on H or there is a color that appears exactly once on H. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function f such that for every p ≥ 1, every graph in the class admits a p-centered coloring using at most f (p) colors. In this paper, we give upper bounds for the maximum number of colors needed in a p-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit p-centered colorings with O(p3 log p) colors where the previous bound was O(p19 ); (2) bounded degree graphs admit p-centered colorings with O(p) colors while it was conjectured that they require an exponential number of colors in p; (3) graphs avoiding a fixed graph as a topological minor admit p-centered colorings with a polynomial in p number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth t that require( ) p+t t colors in any p-centered coloring; this matches the known upper bound. (5) there are planar graphs that require Ω(p2 log p) colors in any p-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth 3. We prove our results using a variety of techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe–Marx structure theorem.

  • Název v anglickém jazyce

    Improved bounds for centered colorings

  • Popis výsledku anglicky

    A vertex coloring φ of a graph G is p-centered if for every connected subgraph H of G either φ uses more than p colors on H or there is a color that appears exactly once on H. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function f such that for every p ≥ 1, every graph in the class admits a p-centered coloring using at most f (p) colors. In this paper, we give upper bounds for the maximum number of colors needed in a p-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit p-centered colorings with O(p3 log p) colors where the previous bound was O(p19 ); (2) bounded degree graphs admit p-centered colorings with O(p) colors while it was conjectured that they require an exponential number of colors in p; (3) graphs avoiding a fixed graph as a topological minor admit p-centered colorings with a polynomial in p number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth t that require( ) p+t t colors in any p-centered coloring; this matches the known upper bound. (5) there are planar graphs that require Ω(p2 log p) colors in any p-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth 3. We prove our results using a variety of techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe–Marx structure theorem.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Combinatorics

  • ISSN

    2517-5599

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    28

  • Strana od-do

    1-28

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85115731316