Model-based Approach for Building Trust in Autonomous Drones through Digital Twins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126492" target="_blank" >RIV/00216224:14330/22:00126492 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9945227" target="_blank" >https://ieeexplore.ieee.org/document/9945227</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53654.2022.9945227" target="_blank" >10.1109/SMC53654.2022.9945227</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model-based Approach for Building Trust in Autonomous Drones through Digital Twins
Popis výsledku v původním jazyce
The 21st century is the age of automation. The automotive industry is converging towards deployment of com- plete automation by 2030. But are humans ready for it, or will they be hesitant to adopt it due to the lack of trust? To safeguard future autonomous mobility, robust run-time trust assurance and assessment is necessary. One strategy that is so far under-explored is rooted in involving the intelligence inside the autonomous agents, which could be directed towards detection of trust-breaking behaviour in other agents so that problematic vehicles are reported before they can engage in harmful behaviour. To support the progress in this direction, we propose a peer-to- peer model-based run-time trust assessment method, employing the model in terms of a Digital Twin for an autonomous vehicle (drone in our case) to ensure the trusted execution of intelligent agents. In this research, we examine the role of the Digital Twin in the trust-building scenario, and propose the characteristics of the intended Digital Twin model. To illustrate the approach, we present a case study of an autonomous-drone food delivery system and use formal approaches such as Petri Nets and Finite State Machines (FSM) to evaluate the scenario and demonstrate how trust could be built among autonomous drones or other vehicles.
Název v anglickém jazyce
Model-based Approach for Building Trust in Autonomous Drones through Digital Twins
Popis výsledku anglicky
The 21st century is the age of automation. The automotive industry is converging towards deployment of com- plete automation by 2030. But are humans ready for it, or will they be hesitant to adopt it due to the lack of trust? To safeguard future autonomous mobility, robust run-time trust assurance and assessment is necessary. One strategy that is so far under-explored is rooted in involving the intelligence inside the autonomous agents, which could be directed towards detection of trust-breaking behaviour in other agents so that problematic vehicles are reported before they can engage in harmful behaviour. To support the progress in this direction, we propose a peer-to- peer model-based run-time trust assessment method, employing the model in terms of a Digital Twin for an autonomous vehicle (drone in our case) to ensure the trusted execution of intelligent agents. In this research, we examine the role of the Digital Twin in the trust-building scenario, and propose the characteristics of the intended Digital Twin model. To illustrate the approach, we present a case study of an autonomous-drone food delivery system and use formal approaches such as Petri Nets and Finite State Machines (FSM) to evaluate the scenario and demonstrate how trust could be built among autonomous drones or other vehicles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016943" target="_blank" >EF19_073/0016943: Interní grantová agentura Masarykovy univerzity</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN
9781665452588
ISSN
1062-922X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
656-662
Název nakladatele
IEEE
Místo vydání
USA
Místo konání akce
USA
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—