Conceptual Framework for Adaptive Safety in Autonomous Ecosystems.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130846" target="_blank" >RIV/00216224:14330/23:00130846 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0012086600003538" target="_blank" >https://doi.org/10.5220/0012086600003538</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012086600003538" target="_blank" >10.5220/0012086600003538</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conceptual Framework for Adaptive Safety in Autonomous Ecosystems.
Popis výsledku v původním jazyce
The dynamic collaboration among hyper-connected Autonomous Systems promotes their evolution towards Autonomous Ecosystems. In order to maintain the safety of such structures, it is essential to ensure that there is a certain level of understanding of the present and future behavior of individual systems in these ecosystems. Adaptive Safety is a promising direction to control access to features between cooperating systems. However, it requires information about its collaborators within the environment. Digital Twins could be used to predict possible future behavior of a system. This paper introduces a conceptual framework for Adaptive Safety that is being triggered based on the trust score computed from the predictive simulation of Digital Twins, which we suggest to use in Autonomous Ecosystems to load and safely execute third-party Smart Agents. By quantifying trust towards the agent and combining it with a decision tree, we leverage this as a deciding factor to conceal or expose certain features among collaborating systems.
Název v anglickém jazyce
Conceptual Framework for Adaptive Safety in Autonomous Ecosystems.
Popis výsledku anglicky
The dynamic collaboration among hyper-connected Autonomous Systems promotes their evolution towards Autonomous Ecosystems. In order to maintain the safety of such structures, it is essential to ensure that there is a certain level of understanding of the present and future behavior of individual systems in these ecosystems. Adaptive Safety is a promising direction to control access to features between cooperating systems. However, it requires information about its collaborators within the environment. Digital Twins could be used to predict possible future behavior of a system. This paper introduces a conceptual framework for Adaptive Safety that is being triggered based on the trust score computed from the predictive simulation of Digital Twins, which we suggest to use in Autonomous Ecosystems to load and safely execute third-party Smart Agents. By quantifying trust towards the agent and combining it with a decision tree, we leverage this as a deciding factor to conceal or expose certain features among collaborating systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th International Conference on Software Technologies - ICSOFT
ISBN
9789897586651
ISSN
2184-2833
e-ISSN
—
Počet stran výsledku
11
Strana od-do
393-403
Název nakladatele
SciTePress
Místo vydání
Neuveden
Místo konání akce
Řím, Itálie
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—