Weighted Model Counting with Twin-Width
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00126576" target="_blank" >RIV/00216224:14330/22:00126576 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.SAT.2022.15" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.SAT.2022.15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.SAT.2022.15" target="_blank" >10.4230/LIPIcs.SAT.2022.15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weighted Model Counting with Twin-Width
Popis výsledku v původním jazyce
Bonnet et al. (FOCS 2020) introduced the graph invariant twin-width and showed that many NP-hard problems are tractable for graphs of bounded twin-width, generalizing similar results for other width measures, including treewidth and clique-width. In this paper, we investigate the use of twin-width for solving the propositional satisfiability problem (SAT) and propositional model counting. We particularly focus on Bounded-ones Weighted Model Counting (BWMC), which takes as input a CNF formula F along with a bound k and asks for the weighted sum of all models with at most k positive literals. BWMC generalizes not only SAT but also (weighted) model counting. We develop the notion of “signed” twin-width of CNF formulas and establish that BWMC is fixed-parameter tractable when parameterized by the certified signed twin-width of F plus k. We show that this result is tight: it is neither possible to drop the bound k nor use the vanilla twin-width instead if one wishes to retain fixed-parameter tractability, even for the easier problem SAT. Our theoretical results are complemented with an empirical evaluation and comparison of signed twin-width on various classes of CNF formulas.
Název v anglickém jazyce
Weighted Model Counting with Twin-Width
Popis výsledku anglicky
Bonnet et al. (FOCS 2020) introduced the graph invariant twin-width and showed that many NP-hard problems are tractable for graphs of bounded twin-width, generalizing similar results for other width measures, including treewidth and clique-width. In this paper, we investigate the use of twin-width for solving the propositional satisfiability problem (SAT) and propositional model counting. We particularly focus on Bounded-ones Weighted Model Counting (BWMC), which takes as input a CNF formula F along with a bound k and asks for the weighted sum of all models with at most k positive literals. BWMC generalizes not only SAT but also (weighted) model counting. We develop the notion of “signed” twin-width of CNF formulas and establish that BWMC is fixed-parameter tractable when parameterized by the certified signed twin-width of F plus k. We show that this result is tight: it is neither possible to drop the bound k nor use the vanilla twin-width instead if one wishes to retain fixed-parameter tractability, even for the easier problem SAT. Our theoretical results are complemented with an empirical evaluation and comparison of signed twin-width on various classes of CNF formulas.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-04567S" target="_blank" >GA20-04567S: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)
ISBN
9783959772426
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
17
Strana od-do
„15:1“-„15:17“
Název nakladatele
Schloss Dagstuhl - Leibniz-Zentrum fur Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Dagstuhl, Germany
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—