Deep-Learning Based Trust Management with Self-Adaptation in the Internet of Behavior
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130329" target="_blank" >RIV/00216224:14330/23:00130329 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1145/3555776.3577694" target="_blank" >https://doi.org/10.1145/3555776.3577694</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3555776.3577694" target="_blank" >10.1145/3555776.3577694</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep-Learning Based Trust Management with Self-Adaptation in the Internet of Behavior
Popis výsledku v původním jazyce
Internet of Behavior (IoB) has emerged as a new research paradigm within the context of digital ecosystems, with the support for understanding and positively influencing human behavior by merging behavioral sciences with information technology, and fostering mutual trust building between humans and technology. For example, when automated systems identify improper human driving behavior, IoB can support integrated behavioral adaptation to avoid driving risks that could lead to hazardous situations. In this paper, we propose an ecosystem-level self-adaptation mechanism that aims to provide runtime evidence for trust building in interaction among IoB elements. Our approach employs an indirect trust management scheme based on deep learning, which has the ability to mimic human behaviour and trust building patterns. In order to validate the model, we consider Pay-How-You-Drive vehicle insurance as a showcase of a IoB application aiming to advance the adaptation of business incentives based on improving driver behavior profiling. The experimental results show that the proposed model can identify different driving states with high accuracy, to support the IoB applications.
Název v anglickém jazyce
Deep-Learning Based Trust Management with Self-Adaptation in the Internet of Behavior
Popis výsledku anglicky
Internet of Behavior (IoB) has emerged as a new research paradigm within the context of digital ecosystems, with the support for understanding and positively influencing human behavior by merging behavioral sciences with information technology, and fostering mutual trust building between humans and technology. For example, when automated systems identify improper human driving behavior, IoB can support integrated behavioral adaptation to avoid driving risks that could lead to hazardous situations. In this paper, we propose an ecosystem-level self-adaptation mechanism that aims to provide runtime evidence for trust building in interaction among IoB elements. Our approach employs an indirect trust management scheme based on deep learning, which has the ability to mimic human behaviour and trust building patterns. In order to validate the model, we consider Pay-How-You-Drive vehicle insurance as a showcase of a IoB application aiming to advance the adaptation of business incentives based on improving driver behavior profiling. The experimental results show that the proposed model can identify different driving states with high accuracy, to support the IoB applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 38th ACM/SISAC '23: Proceedings of the 38th ACM/SIGAPP Symposium on Applied ComputingGAPP Symposium on Applied Computing (SAC '23)
ISBN
9781450395175
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
874-881
Název nakladatele
ACM
Místo vydání
Neuveden
Místo konání akce
Neuveden
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001124308100124