Resources and Few-shot Learners for In-context Learning in Slavic Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130911" target="_blank" >RIV/00216224:14330/23:00130911 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.bsnlp-1.12/" target="_blank" >https://aclanthology.org/2023.bsnlp-1.12/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resources and Few-shot Learners for In-context Learning in Slavic Languages
Popis výsledku v původním jazyce
Despite the rapid recent progress in creating accurate and compact in-context learners, most recent work focuses on in-context learning (ICL) for tasks in English. However, the ability to interact with users of languages outside English presents a great potential for broadening the applicability of language technologies to non-English speakers. In this work, we collect the infrastructure necessary for training and evaluation of ICL in a selection of Slavic languages: Czech, Polish, and Russian. We link a diverse set of datasets and cast these into a unified instructional format through a set of transformations and newly-crafted templates written purely in target languages. Using the newly-curated dataset, we evaluate a set of the most recent in-context learners and compare their results to the supervised baselines. Finally, we train, evaluate and publish a set of in-context learning models that we train on the collected resources and compare their performance to previous work. We find that ICL models tuned in English are also able to learn some tasks from non-English contexts, but multilingual instruction fine-tuning consistently improves the ICL ability. We also find that the massive multitask training can be outperformed by single-task training in the target language, uncovering the potential for specializing in-context learners to the language(s) of their application.
Název v anglickém jazyce
Resources and Few-shot Learners for In-context Learning in Slavic Languages
Popis výsledku anglicky
Despite the rapid recent progress in creating accurate and compact in-context learners, most recent work focuses on in-context learning (ICL) for tasks in English. However, the ability to interact with users of languages outside English presents a great potential for broadening the applicability of language technologies to non-English speakers. In this work, we collect the infrastructure necessary for training and evaluation of ICL in a selection of Slavic languages: Czech, Polish, and Russian. We link a diverse set of datasets and cast these into a unified instructional format through a set of transformations and newly-crafted templates written purely in target languages. Using the newly-curated dataset, we evaluate a set of the most recent in-context learners and compare their results to the supervised baselines. Finally, we train, evaluate and publish a set of in-context learning models that we train on the collected resources and compare their performance to previous work. We find that ICL models tuned in English are also able to learn some tasks from non-English contexts, but multilingual instruction fine-tuning consistently improves the ICL ability. We also find that the massive multitask training can be outperformed by single-task training in the target language, uncovering the potential for specializing in-context learners to the language(s) of their application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)
ISBN
9781959429579
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
94-105
Název nakladatele
Association for Computational Linguistics
Místo vydání
Dubrovnik, Croatia
Místo konání akce
Dubrovnik, Croatia
Datum konání akce
2. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—