Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Can In-context Learners Learn a Reasoning Concept from Demonstrations?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00131346" target="_blank" >RIV/00216224:14330/23:00131346 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Can In-context Learners Learn a Reasoning Concept from Demonstrations?

  • Popis výsledku v původním jazyce

    Language models exhibit an emergent ability to learn a new task from a small number of input-output demonstrations. However, recent work shows that in-context learners largely rely on their pre-trained knowledge, such as the sentiment of the labels, instead of learning new associations from the input. We argue that the commonly-used few-shot evaluation using a random selection of in-context demonstrations can not disentangle models' reliance on such biases, as most of the randomly-selected demonstrations do not present relations informative for prediction beyond exposing the task's input-output distribution. Therefore, to evaluate models' in-context learning ability independent of models' memory, we introduce a Concept-sharing few-shot learning method choosing the demonstrations that share an underlying concept with the predicted sample. We extract a set of such concepts from available human explanations and measure how much models can benefit from presenting these concepts in few-shot demonstrations. We find that most of the recent in-context learners can not consistently benefit from the demonstrated concepts, irrespective of the model size. However, we note that T0 models are more sensitive to exhibited concepts, benefiting from concept-sharing demonstrations in 7 out of 8 evaluation scenarios.

  • Název v anglickém jazyce

    Can In-context Learners Learn a Reasoning Concept from Demonstrations?

  • Popis výsledku anglicky

    Language models exhibit an emergent ability to learn a new task from a small number of input-output demonstrations. However, recent work shows that in-context learners largely rely on their pre-trained knowledge, such as the sentiment of the labels, instead of learning new associations from the input. We argue that the commonly-used few-shot evaluation using a random selection of in-context demonstrations can not disentangle models' reliance on such biases, as most of the randomly-selected demonstrations do not present relations informative for prediction beyond exposing the task's input-output distribution. Therefore, to evaluate models' in-context learning ability independent of models' memory, we introduce a Concept-sharing few-shot learning method choosing the demonstrations that share an underlying concept with the predicted sample. We extract a set of such concepts from available human explanations and measure how much models can benefit from presenting these concepts in few-shot demonstrations. We find that most of the recent in-context learners can not consistently benefit from the demonstrated concepts, irrespective of the model size. However, we note that T0 models are more sensitive to exhibited concepts, benefiting from concept-sharing demonstrations in 7 out of 8 evaluation scenarios.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 1st Workshop on Natural Language Reasoning and Structured Explanations (NLRSE)

  • ISBN

    9781959429944

  • ISSN

    0736-587X

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    107-115

  • Název nakladatele

    The Association for Computational Linguistics

  • Místo vydání

    Toronto, Canada

  • Místo konání akce

    Toronto, Canada

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku