Evaluating Sentence Alignment Methods in a Low-Resource Setting: An English-YorùBá Study Case
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00138715" target="_blank" >RIV/00216224:14330/23:00138715 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.loresmt-1.10.pdf" target="_blank" >https://aclanthology.org/2023.loresmt-1.10.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.loresmt-1.10" target="_blank" >10.18653/v1/2023.loresmt-1.10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating Sentence Alignment Methods in a Low-Resource Setting: An English-YorùBá Study Case
Popis výsledku v původním jazyce
Parallel corpora are still crucial to train effective Machine Translation systems. This is even more true for low-resource language pairs, for which Neural Machine Translation has been shown to be less robust to domain mismatch and noise. Due to time and resource constraints, parallel corpora are mostly created with sentence alignment methods which automatically infer alignments. Recent work focused on state-of-the-art pre-trained sentence embeddings-based methods which are available only for a tiny fraction of the world’s languages. In this paper, we evaluate the performance of four widely used algorithms on the low-resource English-Yorùbá language pair against a multidomain benchmark parallel corpus on two experiments involving 1-to-1 alignments with and without reordering. We find that, at least for this language pair, earlier and simpler methods are more suited to the task, all the while not requiring additional data or resources. We also report that the methods we evaluated perform differently across distinct domains, thus indicating that some approach may be better for a specific domain or textual structure.
Název v anglickém jazyce
Evaluating Sentence Alignment Methods in a Low-Resource Setting: An English-YorùBá Study Case
Popis výsledku anglicky
Parallel corpora are still crucial to train effective Machine Translation systems. This is even more true for low-resource language pairs, for which Neural Machine Translation has been shown to be less robust to domain mismatch and noise. Due to time and resource constraints, parallel corpora are mostly created with sentence alignment methods which automatically infer alignments. Recent work focused on state-of-the-art pre-trained sentence embeddings-based methods which are available only for a tiny fraction of the world’s languages. In this paper, we evaluate the performance of four widely used algorithms on the low-resource English-Yorùbá language pair against a multidomain benchmark parallel corpus on two experiments involving 1-to-1 alignments with and without reordering. We find that, at least for this language pair, earlier and simpler methods are more suited to the task, all the while not requiring additional data or resources. We also report that the methods we evaluated perform differently across distinct domains, thus indicating that some approach may be better for a specific domain or textual structure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023062" target="_blank" >LM2023062: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Sixth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023)
ISBN
9781959429555
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
123-129
Název nakladatele
Association for Computational Linguistics
Místo vydání
Stroudsburg, PA 18360
Místo konání akce
Dubrovnik
Datum konání akce
6. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—