Identification of Device Dependencies Using Link Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135430" target="_blank" >RIV/00216224:14330/24:00135430 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575713" target="_blank" >http://dx.doi.org/10.1109/NOMS59830.2024.10575713</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575713" target="_blank" >10.1109/NOMS59830.2024.10575713</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of Device Dependencies Using Link Prediction
Popis výsledku v původním jazyce
Devices in computer networks cannot work without essential network services provided by a limited count of devices. Identification of device dependencies determines whether a pair of IP addresses is a dependency, i.e., the host with the first IP address is dependent on the second one. These dependencies cannot be identified manually in large and dynamically changing networks. Nevertheless, they are important due to possible unexpected failures, performance issues, and cascading effects. We address the identification of dependencies using a new approach based on graph-based machine learning. The approach belongs to link prediction based on a latent representation of the computer network’s communication graph. It samples random walks over IP addresses that fulfill time conditions imposed on network dependencies. The constrained random walks are used by a neural network to construct IP address embedding, which is a space that contains IP addresses that often appear close together in the same communication chain (i.e., random walk). Dependency embedding is constructed by combining values for IP addresses from their embedding and used for training the resulting dependency classifier. We evaluated the approach using IP flow datasets from a controlled environment and university campus network that contain evidence about dependencies. Evaluation concerning the correctness and relationship to other approaches shows that the approach achieves acceptable performance. It can simultaneously consider all types of dependencies and is applicable for batch processing in operational conditions.
Název v anglickém jazyce
Identification of Device Dependencies Using Link Prediction
Popis výsledku anglicky
Devices in computer networks cannot work without essential network services provided by a limited count of devices. Identification of device dependencies determines whether a pair of IP addresses is a dependency, i.e., the host with the first IP address is dependent on the second one. These dependencies cannot be identified manually in large and dynamically changing networks. Nevertheless, they are important due to possible unexpected failures, performance issues, and cascading effects. We address the identification of dependencies using a new approach based on graph-based machine learning. The approach belongs to link prediction based on a latent representation of the computer network’s communication graph. It samples random walks over IP addresses that fulfill time conditions imposed on network dependencies. The constrained random walks are used by a neural network to construct IP address embedding, which is a space that contains IP addresses that often appear close together in the same communication chain (i.e., random walk). Dependency embedding is constructed by combining values for IP addresses from their embedding and used for training the resulting dependency classifier. We evaluated the approach using IP flow datasets from a controlled environment and university campus network that contain evidence about dependencies. Evaluation concerning the correctness and relationship to other approaches shows that the approach achieves acceptable performance. It can simultaneously consider all types of dependencies and is applicable for batch processing in operational conditions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_010%2F0003229" target="_blank" >EH22_010/0003229: MSCAfellow5_MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024
ISBN
9798350327946
ISSN
1542-1201
e-ISSN
2374-9709
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
IEEE Xplore Digital Library
Místo vydání
Seoul, South Korea
Místo konání akce
Seoul, South Korea
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001270140300175