Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Identification of Device Dependencies Using Link Prediction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135430" target="_blank" >RIV/00216224:14330/24:00135430 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575713" target="_blank" >http://dx.doi.org/10.1109/NOMS59830.2024.10575713</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NOMS59830.2024.10575713" target="_blank" >10.1109/NOMS59830.2024.10575713</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Identification of Device Dependencies Using Link Prediction

  • Popis výsledku v původním jazyce

    Devices in computer networks cannot work without essential network services provided by a limited count of devices. Identification of device dependencies determines whether a pair of IP addresses is a dependency, i.e., the host with the first IP address is dependent on the second one. These dependencies cannot be identified manually in large and dynamically changing networks. Nevertheless, they are important due to possible unexpected failures, performance issues, and cascading effects. We address the identification of dependencies using a new approach based on graph-based machine learning. The approach belongs to link prediction based on a latent representation of the computer network’s communication graph. It samples random walks over IP addresses that fulfill time conditions imposed on network dependencies. The constrained random walks are used by a neural network to construct IP address embedding, which is a space that contains IP addresses that often appear close together in the same communication chain (i.e., random walk). Dependency embedding is constructed by combining values for IP addresses from their embedding and used for training the resulting dependency classifier. We evaluated the approach using IP flow datasets from a controlled environment and university campus network that contain evidence about dependencies. Evaluation concerning the correctness and relationship to other approaches shows that the approach achieves acceptable performance. It can simultaneously consider all types of dependencies and is applicable for batch processing in operational conditions.

  • Název v anglickém jazyce

    Identification of Device Dependencies Using Link Prediction

  • Popis výsledku anglicky

    Devices in computer networks cannot work without essential network services provided by a limited count of devices. Identification of device dependencies determines whether a pair of IP addresses is a dependency, i.e., the host with the first IP address is dependent on the second one. These dependencies cannot be identified manually in large and dynamically changing networks. Nevertheless, they are important due to possible unexpected failures, performance issues, and cascading effects. We address the identification of dependencies using a new approach based on graph-based machine learning. The approach belongs to link prediction based on a latent representation of the computer network’s communication graph. It samples random walks over IP addresses that fulfill time conditions imposed on network dependencies. The constrained random walks are used by a neural network to construct IP address embedding, which is a space that contains IP addresses that often appear close together in the same communication chain (i.e., random walk). Dependency embedding is constructed by combining values for IP addresses from their embedding and used for training the resulting dependency classifier. We evaluated the approach using IP flow datasets from a controlled environment and university campus network that contain evidence about dependencies. Evaluation concerning the correctness and relationship to other approaches shows that the approach achieves acceptable performance. It can simultaneously consider all types of dependencies and is applicable for batch processing in operational conditions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_010%2F0003229" target="_blank" >EH22_010/0003229: MSCAfellow5_MUNI</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024

  • ISBN

    9798350327946

  • ISSN

    1542-1201

  • e-ISSN

    2374-9709

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Název nakladatele

    IEEE Xplore Digital Library

  • Místo vydání

    Seoul, South Korea

  • Místo konání akce

    Seoul, South Korea

  • Datum konání akce

    1. 1. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001270140300175