Computing Twin-Width Parameterized by the Feedback Edge Number
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00135638" target="_blank" >RIV/00216224:14330/24:00135638 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2024.7" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.STACS.2024.7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2024.7" target="_blank" >10.4230/LIPIcs.STACS.2024.7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing Twin-Width Parameterized by the Feedback Edge Number
Popis výsledku v původním jazyce
The problem of whether and how one can compute the twin-width of a graph - along with an accompanying contraction sequence - lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under a larger parameterization, notably the feedback edge number k. As our main contributions, under this parameterization we obtain (1) a linear bikernel for the problem of either computing a 2-contraction sequence or determining that none exists and (2) an approximate fixed-parameter algorithm which computes an ????-contraction sequence (for an arbitrary specified ????) or determines that the twin-width of the input graph is at least ????. These algorithmic results rely on newly obtained insights into the structure of optimal contraction sequences, and as a byproduct of these we also slightly tighten the bound on the twin-width of graphs with small feedback edge number.
Název v anglickém jazyce
Computing Twin-Width Parameterized by the Feedback Edge Number
Popis výsledku anglicky
The problem of whether and how one can compute the twin-width of a graph - along with an accompanying contraction sequence - lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under a larger parameterization, notably the feedback edge number k. As our main contributions, under this parameterization we obtain (1) a linear bikernel for the problem of either computing a 2-contraction sequence or determining that none exists and (2) an approximate fixed-parameter algorithm which computes an ????-contraction sequence (for an arbitrary specified ????) or determines that the twin-width of the input graph is at least ????. These algorithmic results rely on newly obtained insights into the structure of optimal contraction sequences, and as a byproduct of these we also slightly tighten the bound on the twin-width of graphs with small feedback edge number.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)
ISBN
9783959773119
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
19
Strana od-do
„7:1“-„7:19“
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum f{"u}r Informatik
Místo vydání
Dagstuhl
Místo konání akce
Clermont-Ferrand
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001300393400007