Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00136100" target="_blank" >RIV/00216224:14330/24:00136100 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3664476.3664523" target="_blank" >http://dx.doi.org/10.1145/3664476.3664523</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3664476.3664523" target="_blank" >10.1145/3664476.3664523</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification
Popis výsledku v původním jazyce
Diverse, accurate, and up-to-date training environments are essential for training cybersecurity experts and autonomous systems. However, preparation of their content is time-consuming and requires experts to provide detailed specifications. In this paper, we explore the challenges of automated generation of the content (composed of scenarios and terrains) for these environments. We propose new models to represent the cybersecurity domain and associated action spaces. These models are used to create sound and complex training content based on partial specifications provided by users. We compare the results with a real-world complex malware campaign to assess the realism of the synthesized content. To further evaluate the correctness and variability of the results, we utilize the kill-chain attack graph generation for the generated training content to asses the internal correspondence of its key components. Our results demonstrate that the proposed approach can create complex training content similar to advanced attack campaigns, which passes evaluation for soundness and practicality. Our proposed approach and its implementation significantly contribute to the state of the art, enabling novel approaches to cybersecurity training and autonomous system development.
Název v anglickém jazyce
Adversary Tactic Driven Scenario and Terrain Generation with Partial Infrastructure Specification
Popis výsledku anglicky
Diverse, accurate, and up-to-date training environments are essential for training cybersecurity experts and autonomous systems. However, preparation of their content is time-consuming and requires experts to provide detailed specifications. In this paper, we explore the challenges of automated generation of the content (composed of scenarios and terrains) for these environments. We propose new models to represent the cybersecurity domain and associated action spaces. These models are used to create sound and complex training content based on partial specifications provided by users. We compare the results with a real-world complex malware campaign to assess the realism of the synthesized content. To further evaluate the correctness and variability of the results, we utilize the kill-chain attack graph generation for the generated training content to asses the internal correspondence of its key components. Our results demonstrate that the proposed approach can create complex training content similar to advanced attack campaigns, which passes evaluation for soundness and practicality. Our proposed approach and its implementation significantly contribute to the state of the art, enabling novel approaches to cybersecurity training and autonomous system development.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/VJ02010020" target="_blank" >VJ02010020: AI-Dojo: Multiagentní testbed pro výzkum a testování umělé inteligence v kyberbezpečnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security
ISBN
9798400717185
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
Association for Computing Machinery
Místo vydání
New York, United States
Místo konání akce
Vienna
Datum konání akce
30. 7. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001283894700045