Bilingual Lexicon Induction From Comparable and Parallel Data: A Comparative Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00136956" target="_blank" >RIV/00216224:14330/24:00136956 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-70563-2_3" target="_blank" >http://dx.doi.org/10.1007/978-3-031-70563-2_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70563-2_3" target="_blank" >10.1007/978-3-031-70563-2_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bilingual Lexicon Induction From Comparable and Parallel Data: A Comparative Analysis
Popis výsledku v původním jazyce
Bilingual lexicon induction (BLI) from comparable data has become a common way of evaluating cross-lingual word embeddings (CWEs). These models have drawn much attention, mainly due to their availability for rare and low-resource language pairs. An alternative offers systems exploiting parallel data, such as popular neural machine translation systems (NMTSs), which are effective and yield state-of-the-art results. Despite the significant advancements in NMTSs, their effectiveness in the BLI task compared to the models using comparable data remains underexplored. In this paper, we provide a comparative study of the NMTS and CWE models evaluated on the BLI task and demonstrate the results across three diverse language pairs: distant (Estonian-English) and close (Estonian-Finnish) language pair and language pair with different scripts (Estonian-Russian). Our study reveals the differences, strengths, and limitations of both approaches. We show that while NMTSs achieve impressive results for languages with a great amount of training data available, CWEs emerge as a better option when faced less resources.
Název v anglickém jazyce
Bilingual Lexicon Induction From Comparable and Parallel Data: A Comparative Analysis
Popis výsledku anglicky
Bilingual lexicon induction (BLI) from comparable data has become a common way of evaluating cross-lingual word embeddings (CWEs). These models have drawn much attention, mainly due to their availability for rare and low-resource language pairs. An alternative offers systems exploiting parallel data, such as popular neural machine translation systems (NMTSs), which are effective and yield state-of-the-art results. Despite the significant advancements in NMTSs, their effectiveness in the BLI task compared to the models using comparable data remains underexplored. In this paper, we provide a comparative study of the NMTS and CWE models evaluated on the BLI task and demonstrate the results across three diverse language pairs: distant (Estonian-English) and close (Estonian-Finnish) language pair and language pair with different scripts (Estonian-Russian). Our study reveals the differences, strengths, and limitations of both approaches. We show that while NMTSs achieve impressive results for languages with a great amount of training data available, CWEs emerge as a better option when faced less resources.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Text, Speech, and Dialogue
ISBN
9783031705625
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
30-42
Název nakladatele
Springer Nature Switzerland
Místo vydání
Cham
Místo konání akce
Cham
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
001307840300003