stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139091" target="_blank" >RIV/00216224:14330/24:00139091 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/FAIA240638" target="_blank" >http://dx.doi.org/10.3233/FAIA240638</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA240638" target="_blank" >10.3233/FAIA240638</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
Popis výsledku v původním jazyce
Integrating symbolic knowledge and data-driven learning algorithms is a longstanding challenge in Artificial Intelligence. Despite the recognized importance of this task, a notable gap exists due to the discreteness of symbolic representations and the continuous nature of machine-learning computations. One of the desired bridges between these two worlds would be to define semantically grounded vector representation (feature embedding) of logic formulae, thus enabling to perform continuous learning and optimization in the semantic space of formulae. We tackle this goal for knowledge expressed in Signal Temporal Logic (STL) and devise a method to compute continuous embeddings of formulae with several desirable properties: the embedding (i) is finite-dimensional, (ii) faithfully reflects the semantics of the formulae, (iii) does not require any learning but instead is defined from basic principles, (iv) is interpretable. Another significant contribution lies in demonstrating the efficacy of the approach in two tasks: learning model checking, where we predict the probability of requirements being satisfied in stochastic processes; and integrating the embeddings into a neuro-symbolic framework, to constrain the output of a deep-learning generative model to comply to a given logical specification.
Název v anglickém jazyce
stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic
Popis výsledku anglicky
Integrating symbolic knowledge and data-driven learning algorithms is a longstanding challenge in Artificial Intelligence. Despite the recognized importance of this task, a notable gap exists due to the discreteness of symbolic representations and the continuous nature of machine-learning computations. One of the desired bridges between these two worlds would be to define semantically grounded vector representation (feature embedding) of logic formulae, thus enabling to perform continuous learning and optimization in the semantic space of formulae. We tackle this goal for knowledge expressed in Signal Temporal Logic (STL) and devise a method to compute continuous embeddings of formulae with several desirable properties: the embedding (i) is finite-dimensional, (ii) faithfully reflects the semantics of the formulae, (iii) does not require any learning but instead is defined from basic principles, (iv) is interpretable. Another significant contribution lies in demonstrating the efficacy of the approach in two tasks: learning model checking, where we predict the probability of requirements being satisfied in stochastic processes; and integrating the embeddings into a neuro-symbolic framework, to constrain the output of a deep-learning generative model to comply to a given logical specification.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ECAI 2024, 27th European Conference on Artificial Intelligence
ISBN
9781643685489
ISSN
0922-6389
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1381-1388
Název nakladatele
IOS Press
Místo vydání
Santiago de Compostela, Spain
Místo konání akce
Santiago de Compostela, Spain
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—