Graph Product Structure for h-Framed Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139110" target="_blank" >RIV/00216224:14330/24:00139110 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i4p56" target="_blank" >https://www.combinatorics.org/ojs/index.php/eljc/article/view/v31i4p56</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/12123" target="_blank" >10.37236/12123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph Product Structure for h-Framed Graphs
Popis výsledku v původním jazyce
Graph product structure theory expresses certain graphs as subgraphs of the strong product of much simpler graphs. In particular, an elegant formulation for the corresponding structural theorems involves the strong product of a path and of a bounded treewidth graph, and allows to lift combinatorial results for bounded treewidth graphs to graph classes for which the product structure holds, such as to planar graphs [Dujmović et al., J. ACM, 67(4), 22:1-38, 2020]. In this paper, we join the search for extensions of this powerful tool beyond planarity by considering the h -framed graphs, a graph class that includes 1-planar, optimal 2-planar, and k-map graphs (for appropriate values of h). We establish a graph product structure theorem for h-framed graphs stating that the graphs in this class are subgraphs of the strong product of a path, of a planar graph of treewidth at most 3, and of a clique of size 3⌊h/2⌋+⌊h/3⌋−1. This allows us to improve over the previous structural theorems for 1-planar and k-map graphs. Our results lead to significant progress over the previous bounds on the queue number, non-repetitive chromatic number, and p-centered chromatic number of these graph classes, e.g., we lower the currently best upper bound on the queue number of 1-planar graphs and k-map graphs from 115 to 82 and from ⌊33/2(k+3⌊k/2⌋−3)⌋ to ⌊33/2(3⌊k/2⌋+⌊k/3⌋−1)⌋, respectively. We also employ the product structure machinery to improve the current upper bounds on the twin-width of 1-planar graphs from O(1) to 72. All our structural results are constructive and yield efficient algorithms to obtain the corresponding decompositions.
Název v anglickém jazyce
Graph Product Structure for h-Framed Graphs
Popis výsledku anglicky
Graph product structure theory expresses certain graphs as subgraphs of the strong product of much simpler graphs. In particular, an elegant formulation for the corresponding structural theorems involves the strong product of a path and of a bounded treewidth graph, and allows to lift combinatorial results for bounded treewidth graphs to graph classes for which the product structure holds, such as to planar graphs [Dujmović et al., J. ACM, 67(4), 22:1-38, 2020]. In this paper, we join the search for extensions of this powerful tool beyond planarity by considering the h -framed graphs, a graph class that includes 1-planar, optimal 2-planar, and k-map graphs (for appropriate values of h). We establish a graph product structure theorem for h-framed graphs stating that the graphs in this class are subgraphs of the strong product of a path, of a planar graph of treewidth at most 3, and of a clique of size 3⌊h/2⌋+⌊h/3⌋−1. This allows us to improve over the previous structural theorems for 1-planar and k-map graphs. Our results lead to significant progress over the previous bounds on the queue number, non-repetitive chromatic number, and p-centered chromatic number of these graph classes, e.g., we lower the currently best upper bound on the queue number of 1-planar graphs and k-map graphs from 115 to 82 and from ⌊33/2(k+3⌊k/2⌋−3)⌋ to ⌊33/2(3⌊k/2⌋+⌊k/3⌋−1)⌋, respectively. We also employ the product structure machinery to improve the current upper bounds on the twin-width of 1-planar graphs from O(1) to 72. All our structural results are constructive and yield efficient algorithms to obtain the corresponding decompositions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-04567S" target="_blank" >GA20-04567S: Struktura efektivně řešitelných případů těžkých algoritmických problémů na grafech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ELECTRONIC JOURNAL OF COMBINATORICS
ISSN
1077-8926
e-ISSN
1077-8926
Svazek periodika
31
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
„P4.56“
Kód UT WoS článku
001367413400001
EID výsledku v databázi Scopus
2-s2.0-85211233237