Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F18%3A00101156" target="_blank" >RIV/00216224:14560/18:00101156 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.energy.2018.04.194" target="_blank" >http://dx.doi.org/10.1016/j.energy.2018.04.194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.energy.2018.04.194" target="_blank" >10.1016/j.energy.2018.04.194</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds
Popis výsledku v původním jazyce
This paper investigates volatility forecasting for crude oil and natural gas. The main objective of our research is to determine whether the heterogeneous autoregressive (HAR) model of Corsi (2009) can be outperformed by harnessing information from a related energy commodity. We find that on average, information from related commodity does not improve volatility forecasts, whether we consider a multivariate model, or various univariate models that include this information. However, superior volatility forecasts are produced by combining forecasts from various models. As a result, information from the related commodity can be still useful, because it allows us to construct wider range of possible models, and averaging across various models improves forecasts. Therefore, for somebody interested in precise volatility forecasts of crude oil or natural gas, we recommend to focus on model averaging instead of just including information from related commodity in a single forecast model.
Název v anglickém jazyce
Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds
Popis výsledku anglicky
This paper investigates volatility forecasting for crude oil and natural gas. The main objective of our research is to determine whether the heterogeneous autoregressive (HAR) model of Corsi (2009) can be outperformed by harnessing information from a related energy commodity. We find that on average, information from related commodity does not improve volatility forecasts, whether we consider a multivariate model, or various univariate models that include this information. However, superior volatility forecasts are produced by combining forecasts from various models. As a result, information from the related commodity can be still useful, because it allows us to construct wider range of possible models, and averaging across various models improves forecasts. Therefore, for somebody interested in precise volatility forecasts of crude oil or natural gas, we recommend to focus on model averaging instead of just including information from related commodity in a single forecast model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05829S" target="_blank" >GA18-05829S: Predikce volatility na rozvijících se finančních trzích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy
ISSN
0360-5442
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
15 July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
462-473
Kód UT WoS článku
000445303100040
EID výsledku v databázi Scopus
2-s2.0-85048194675