Similarity as a central approach to flow-based anomaly detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F14%3A00076011" target="_blank" >RIV/00216224:14610/14:00076011 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/nem.1867" target="_blank" >http://dx.doi.org/10.1002/nem.1867</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nem.1867" target="_blank" >10.1002/nem.1867</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Similarity as a central approach to flow-based anomaly detection
Popis výsledku v původním jazyce
Network flow monitoring is currently a common practice in mid and large-size networks. Methods of flow-based anomaly detection are subject to ongoing extensive research, because detection methods based on deep packet inspection have reached their limits.However, there is a lack of comprehensive studies mapping the state of the art in this area. For this reason, we have conducted a thorough survey of flow-based anomaly detection methods published on academic conferences and used by the industry. We haveanalyzed these methods using the perspective of similarity which is inherent to any anomaly detection method. Based on this analysis, we have proposed a new taxonomy of network anomalies and a similarity-oriented classification of flow-based detection methods. We have also identified four issues requiring further research: the lack of flow-based evaluation data sets, infeasible benchmarking of proposed methods, excessive false positive rate, and limited coverage of certain anomaly class
Název v anglickém jazyce
Similarity as a central approach to flow-based anomaly detection
Popis výsledku anglicky
Network flow monitoring is currently a common practice in mid and large-size networks. Methods of flow-based anomaly detection are subject to ongoing extensive research, because detection methods based on deep packet inspection have reached their limits.However, there is a lack of comprehensive studies mapping the state of the art in this area. For this reason, we have conducted a thorough survey of flow-based anomaly detection methods published on academic conferences and used by the industry. We haveanalyzed these methods using the perspective of similarity which is inherent to any anomaly detection method. Based on this analysis, we have proposed a new taxonomy of network anomalies and a similarity-oriented classification of flow-based detection methods. We have also identified four issues requiring further research: the lack of flow-based evaluation data sets, infeasible benchmarking of proposed methods, excessive false positive rate, and limited coverage of certain anomaly class
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Network Management
ISSN
1055-7148
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
318-336
Kód UT WoS článku
000339479100008
EID výsledku v databázi Scopus
—