Autotuning of OpenCL Kernels with Global Optimizations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F17%3A00098442" target="_blank" >RIV/00216224:14610/17:00098442 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?doid=3152821.3152877" target="_blank" >https://dl.acm.org/citation.cfm?doid=3152821.3152877</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3152821.3152877" target="_blank" >10.1145/3152821.3152877</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autotuning of OpenCL Kernels with Global Optimizations
Popis výsledku v původním jazyce
Autotuning is an important method for automatically exploring code optimizations. It may target low-level code optimizations, such as memory blocking, loop unrolling or memory prefetching, as well as high-level optimizations, such as placement of computation kernels on proper hardware devices, optimizing memory transfers between nodes or between accelerators and main memory. In this paper, we introduce an autotuning method, which extends state-of-the-art low-level tuning of OpenCL or CUDA kernels towards more complex optimizations. More precisely, we introduce a Kernel Tuning Toolkit (KTT), which implements inter-kernel global optimizations, allowing to tune parameters affecting multiple kernels or also the host code. We demonstrate on practical examples, that with global kernel optimizations we are able to explore tuning options that are not possible if kernels are tuned separately. Moreover, our tuning strategies can take into account numerical accuracy across multiple kernel invocations and search for implementations within specific numerical error bounds.
Název v anglickém jazyce
Autotuning of OpenCL Kernels with Global Optimizations
Popis výsledku anglicky
Autotuning is an important method for automatically exploring code optimizations. It may target low-level code optimizations, such as memory blocking, loop unrolling or memory prefetching, as well as high-level optimizations, such as placement of computation kernels on proper hardware devices, optimizing memory transfers between nodes or between accelerators and main memory. In this paper, we introduce an autotuning method, which extends state-of-the-art low-level tuning of OpenCL or CUDA kernels towards more complex optimizations. More precisely, we introduce a Kernel Tuning Toolkit (KTT), which implements inter-kernel global optimizations, allowing to tune parameters affecting multiple kernels or also the host code. We demonstrate on practical examples, that with global kernel optimizations we are able to explore tuning options that are not possible if kernels are tuned separately. Moreover, our tuning strategies can take into account numerical accuracy across multiple kernel invocations and search for implementations within specific numerical error bounds.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
1st Workshop on Autotuning and Adaptivity Approaches for Energy Efficient HPC Systems (ANDARE'2017)
ISBN
9781450353632
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
ACM
Místo vydání
Portland (USA)
Místo konání akce
Portland, Oregon, USA
Datum konání akce
1. 1. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—