Towards Dynamic Autotuning of SpMV in CUSP Library
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F24%3A00137324" target="_blank" >RIV/00216224:14610/24:00137324 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IPDPSW63119.2024.00012" target="_blank" >http://dx.doi.org/10.1109/IPDPSW63119.2024.00012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IPDPSW63119.2024.00012" target="_blank" >10.1109/IPDPSW63119.2024.00012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Dynamic Autotuning of SpMV in CUSP Library
Popis výsledku v původním jazyce
Sparse matrix-vector product (SpMV) is a central operation in many iterative methods for solving linear systems and, as such, is an attractive candidate for acceleration on the GPU. However, the performance of the SpMV kernel can vary depending both on the target architecture as well as on the sparsity pattern of the matrix. Thus, to achieve optimal performance, the implementation might need to be adjusted for each particular matrix and architecture. This can be achieved through dynamic autotuning, a method that can optimize a source code during program runtime. In this paper, we present a dynamic autotuning of SpMV kernel included in a production-quality CUSP library. We identify and implement tuning parameters and use the Kernel Tuning Toolkit framework for autotuning of SpMV working with the DIA and ELL sparse matrix formats. The dynamic autotuning integration is fully transparent to the library users - it can be activated just by re-compiling software using our tunable version of the CUSP. The proposed autotuned library is evaluated by comparing it with the original CUSP kernels on a set of representative matrices and by examining the contribution of autotuning. The results show that the autotuned kernels can reach up to about 16.9 × speedup compared to a fixed implementation.
Název v anglickém jazyce
Towards Dynamic Autotuning of SpMV in CUSP Library
Popis výsledku anglicky
Sparse matrix-vector product (SpMV) is a central operation in many iterative methods for solving linear systems and, as such, is an attractive candidate for acceleration on the GPU. However, the performance of the SpMV kernel can vary depending both on the target architecture as well as on the sparsity pattern of the matrix. Thus, to achieve optimal performance, the implementation might need to be adjusted for each particular matrix and architecture. This can be achieved through dynamic autotuning, a method that can optimize a source code during program runtime. In this paper, we present a dynamic autotuning of SpMV kernel included in a production-quality CUSP library. We identify and implement tuning parameters and use the Kernel Tuning Toolkit framework for autotuning of SpMV working with the DIA and ELL sparse matrix formats. The dynamic autotuning integration is fully transparent to the library users - it can be activated just by re-compiling software using our tunable version of the CUSP. The proposed autotuned library is evaluated by comparing it with the original CUSP kernels on a set of representative matrices and by examining the contribution of autotuning. The results show that the autotuned kernels can reach up to about 16.9 × speedup compared to a fixed implementation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023054" target="_blank" >LM2023054: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)
ISBN
9798350364613
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
14-22
Název nakladatele
IEEE
Místo vydání
San Francisco, USA
Místo konání akce
Mauritius
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001284697300084