Performance analysis and autotuning setup of the cuFFT library
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F18%3A00106596" target="_blank" >RIV/00216224:14610/18:00106596 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?id=3295817" target="_blank" >https://dl.acm.org/citation.cfm?id=3295817</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3295816.3295817" target="_blank" >10.1145/3295816.3295817</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance analysis and autotuning setup of the cuFFT library
Popis výsledku v původním jazyce
Fast Fourier transform (FFT) has many applications. It is often one of the most computationally demanding kernels, so a lot of attention has been invested into tuning its performance on various hardware devices. However, FFT libraries have usually many possible settings and it is not always easy to deduce which settings should be used for optimal performance. In practice, we can often slightly modify the FFT settings, for example, we can pad or crop input data. Surprisingly, a majority of state-of-the-art papers focus to answer the question how to implement FFT under given settings but do not pay much attention to the question which settings result in the fastest computation. In this paper, we target a popular implementation of FFT for GPU accelerators, the cuFFT library. We analyze the behavior and the performance of the cuFFT library with respect to input sizes and plan settings. We also present a new tool, cuFFTAdvisor, which proposes and by means of autotuning finds the best configuration of the library for given constraints of input size and plan settings. We experimentally show that our tool is able to propose different settings of the transformation, resulting in an average 6x speedup using fast heuristics and 6.9x speedup using autotuning.
Název v anglickém jazyce
Performance analysis and autotuning setup of the cuFFT library
Popis výsledku anglicky
Fast Fourier transform (FFT) has many applications. It is often one of the most computationally demanding kernels, so a lot of attention has been invested into tuning its performance on various hardware devices. However, FFT libraries have usually many possible settings and it is not always easy to deduce which settings should be used for optimal performance. In practice, we can often slightly modify the FFT settings, for example, we can pad or crop input data. Surprisingly, a majority of state-of-the-art papers focus to answer the question how to implement FFT under given settings but do not pay much attention to the question which settings result in the fastest computation. In this paper, we target a popular implementation of FFT for GPU accelerators, the cuFFT library. We analyze the behavior and the performance of the cuFFT library with respect to input sizes and plan settings. We also present a new tool, cuFFTAdvisor, which proposes and by means of autotuning finds the best configuration of the library for given constraints of input size and plan settings. We experimentally show that our tool is able to propose different settings of the transformation, resulting in an average 6x speedup using fast heuristics and 6.9x speedup using autotuning.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACM International Conference Proceeding Series
ISBN
9781450365918
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
ACM
Místo vydání
Limassol, Cyprus
Místo konání akce
Limassol, Cyprus
Datum konání akce
1. 1. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000471021400001