Acceleration of Molecular Simulations by Parametric Time-Lagged tSNE Metadynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F24%3A00135420" target="_blank" >RIV/00216224:14610/24:00135420 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22330/24:43928908
Výsledek na webu
<a href="https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c05669" target="_blank" >https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c05669</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcb.3c05669" target="_blank" >10.1021/acs.jpcb.3c05669</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acceleration of Molecular Simulations by Parametric Time-Lagged tSNE Metadynamics
Popis výsledku v původním jazyce
The potential of molecular simulations is limited by their computational costs. There is often a need to accelerate simulations using some of the enhanced sampling methods. Metadynamics applies a history-dependent bias potential that disfavors previously visited states. To apply metadynamics, it is necessary to select a few properties of the system─collective variables (CVs) that can be used to define the bias potential. Over the past few years, there have been emerging opportunities for machine learning and, in particular, artificial neural networks within this domain. In this broad context, a specific unsupervised machine learning method was utilized, namely, parametric time-lagged t-distributed stochastic neighbor embedding (ptltSNE) to design CVs. The approach was tested on a Trp-cage trajectory (tryptophan cage) from the literature. The trajectory was used to generate a map of conformations, distinguish fast conformational changes from slow ones, and design CVs. Then, metadynamic simulations were performed. To accelerate the formation of the α-helix, we added the α-RMSD collective variable. This simulation led to one folding event in a 350 ns metadynamics simulation. To accelerate degrees of freedom not addressed by CVs, we performed parallel tempering metadynamics. This simulation led to 10 folding events in a 200 ns simulation with 32 replicas.
Název v anglickém jazyce
Acceleration of Molecular Simulations by Parametric Time-Lagged tSNE Metadynamics
Popis výsledku anglicky
The potential of molecular simulations is limited by their computational costs. There is often a need to accelerate simulations using some of the enhanced sampling methods. Metadynamics applies a history-dependent bias potential that disfavors previously visited states. To apply metadynamics, it is necessary to select a few properties of the system─collective variables (CVs) that can be used to define the bias potential. Over the past few years, there have been emerging opportunities for machine learning and, in particular, artificial neural networks within this domain. In this broad context, a specific unsupervised machine learning method was utilized, namely, parametric time-lagged t-distributed stochastic neighbor embedding (ptltSNE) to design CVs. The approach was tested on a Trp-cage trajectory (tryptophan cage) from the literature. The trajectory was used to generate a map of conformations, distinguish fast conformational changes from slow ones, and design CVs. Then, metadynamic simulations were performed. To accelerate the formation of the α-helix, we added the α-RMSD collective variable. This simulation led to one folding event in a 350 ns metadynamics simulation. To accelerate degrees of freedom not addressed by CVs, we performed parallel tempering metadynamics. This simulation led to 10 folding events in a 200 ns simulation with 32 replicas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Journal of Physical Chemistry B
ISSN
1520-6106
e-ISSN
1520-5207
Svazek periodika
128
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
903-913
Kód UT WoS článku
001156065400001
EID výsledku v databázi Scopus
2-s2.0-85183515639