How Does the Methodology of 3D Structure Preparation Influence the Quality of pK(a) Prediction?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F15%3A00082988" target="_blank" >RIV/00216224:14740/15:00082988 - isvavai.cz</a>
Výsledek na webu
<a href="http://pubs.acs.org/doi/pdf/10.1021/ci500758w" target="_blank" >http://pubs.acs.org/doi/pdf/10.1021/ci500758w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/ci500758w" target="_blank" >10.1021/ci500758w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How Does the Methodology of 3D Structure Preparation Influence the Quality of pK(a) Prediction?
Popis výsledku v původním jazyce
The acid dissociation constant is an important molecular property, and it can be successfully predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico designed molecules. We analyzed how the methodology of in silico 3Dstructure preparation influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel, and RDKit) combined with four different types of optimization. These analyses were performed for three classes of molecules (phenols, carboxylic acids, anilines), and the QSPR model descriptors were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 516 QSPR models and afterward systematically analyzed the influence of the 3D structure source and other factors on their quality. Our results confirmed that QSPR models based on partial atomic charges are able to predict pK(a) with high accuracy.
Název v anglickém jazyce
How Does the Methodology of 3D Structure Preparation Influence the Quality of pK(a) Prediction?
Popis výsledku anglicky
The acid dissociation constant is an important molecular property, and it can be successfully predicted by Quantitative Structure-Property Relationship (QSPR) models, even for in silico designed molecules. We analyzed how the methodology of in silico 3Dstructure preparation influences the quality of QSPR models. Specifically, we evaluated and compared QSPR models based on six different 3D structure sources (DTP NCI, Pubchem, Balloon, Frog2, OpenBabel, and RDKit) combined with four different types of optimization. These analyses were performed for three classes of molecules (phenols, carboxylic acids, anilines), and the QSPR model descriptors were quantum mechanical (QM) and empirical partial atomic charges. Specifically, we developed 516 QSPR models and afterward systematically analyzed the influence of the 3D structure source and other factors on their quality. Our results confirmed that QSPR models based on partial atomic charges are able to predict pK(a) with high accuracy.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CE - Biochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Information and Modeling
ISSN
1549-9596
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1088-1097
Kód UT WoS článku
000356903200002
EID výsledku v databázi Scopus
—