PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F20%3A00118477" target="_blank" >RIV/00216224:14740/20:00118477 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fgene.2020.568546" target="_blank" >10.3389/fgene.2020.568546</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks
Popis výsledku v původním jazyce
G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.
Název v anglickém jazyce
PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks
Popis výsledku anglicky
G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10603 - Genetics and heredity (medical genetics to be 3)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Genetics
ISSN
1664-8021
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
7
Strana od-do
568546
Kód UT WoS článku
000587687500001
EID výsledku v databázi Scopus
2-s2.0-85095854922