Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving Forecast Accuracy through Application of Temporal Aggregation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F16%3A39901275" target="_blank" >RIV/00216275:25310/16:39901275 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5593/sgemsocial2016B23" target="_blank" >http://dx.doi.org/10.5593/sgemsocial2016B23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgemsocial2016B23" target="_blank" >10.5593/sgemsocial2016B23</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving Forecast Accuracy through Application of Temporal Aggregation

  • Popis výsledku v původním jazyce

    Hierarchical forecasting (HF) has traditionally been applied to decrease the time and financial demands of the demand planning process in the cases where the company forecasts demand for a large number of items with a large number of customers. The current surveys show that application of a suitable HF method can result in improved accuracy of demand forecasts on different levels of its cross-sectional aggregation (based on products or territory). However, the area of temporal aggregation does not enjoy sufficient attention in the literature. This paper aims to analyze the influence of the choice of an HF method on the accuracy of corporate forecasts created on different levels of temporal aggregation of the demand. A case study conducted in a manufacturing company of the food industry included time series forecasting in 23 key products of the company on 3 levels of temporal aggregation of sales (yearly, quarterly and monthly sales) using 4 fundamentally different approaches to hierarchical forecasting (bottom-up, middle-out, top-down and optimal combination methods). The forecast accuracy was evaluated through MdAPE indicator. Testing of statistical hypotheses helped to confirm whether choice of an HF method has a significant effect on a change in the monitored forecast error. The study outcomes showed that choice of an HF method affects the accuracy of corporate forecasts. However, the forecasting error was significantly decreased on all the levels of temporal aggregation only when the bottom-up method was applied.

  • Název v anglickém jazyce

    Improving Forecast Accuracy through Application of Temporal Aggregation

  • Popis výsledku anglicky

    Hierarchical forecasting (HF) has traditionally been applied to decrease the time and financial demands of the demand planning process in the cases where the company forecasts demand for a large number of items with a large number of customers. The current surveys show that application of a suitable HF method can result in improved accuracy of demand forecasts on different levels of its cross-sectional aggregation (based on products or territory). However, the area of temporal aggregation does not enjoy sufficient attention in the literature. This paper aims to analyze the influence of the choice of an HF method on the accuracy of corporate forecasts created on different levels of temporal aggregation of the demand. A case study conducted in a manufacturing company of the food industry included time series forecasting in 23 key products of the company on 3 levels of temporal aggregation of sales (yearly, quarterly and monthly sales) using 4 fundamentally different approaches to hierarchical forecasting (bottom-up, middle-out, top-down and optimal combination methods). The forecast accuracy was evaluated through MdAPE indicator. Testing of statistical hypotheses helped to confirm whether choice of an HF method has a significant effect on a change in the monitored forecast error. The study outcomes showed that choice of an HF method affects the accuracy of corporate forecasts. However, the forecasting error was significantly decreased on all the levels of temporal aggregation only when the bottom-up method was applied.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SGEM 2016 : Political Sciences, Law, Finance, Economics and Tourism Conference Proceedings. Book 2. Vol. 3

  • ISBN

    978-619-7105-74-2

  • ISSN

    2367-5659

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    901-908

  • Název nakladatele

    STEF92 Technology Ltd.

  • Místo vydání

    Sofie

  • Místo konání akce

    Albena

  • Datum konání akce

    22. 8. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000395727000113