Preferred location for conducting filament formation in thin-film nano-ionic electrolyte: study of microstructure by atom-probe tomography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F17%3A39911161" target="_blank" >RIV/00216275:25310/17:39911161 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10854-017-6383-y" target="_blank" >http://dx.doi.org/10.1007/s10854-017-6383-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10854-017-6383-y" target="_blank" >10.1007/s10854-017-6383-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preferred location for conducting filament formation in thin-film nano-ionic electrolyte: study of microstructure by atom-probe tomography
Popis výsledku v původním jazyce
Atom-probe tomography of Ag-photodoped amorphous thin-film Ge40S60, the material of interest in nano-ionic memory and lateral geometry MEMS technologies, reveals regions with two distinct compositions on a nanometer length-scale. One type of region is Ag-rich and of a size typically extending beyond the measured sample volume of similar to 40 x 40 x 80 nm(3). These type-I regions contain aligned nanocolumns, similar to 5 nm wide, that are the likely location for reversible diffusion of Ag+ ions and associated growth/dissolution of conducting filaments. The nanocolumns become relatively Ag-rich during the photodoping, and the pattern of Ag enrichment originates from the columnar-porous structure of the as-deposited film that is to some extent preserved in the electrolyte after photodoping. Type-II regions have lower Ag content, are typically 10-20 nm across, and appear to conform to the usual description of the photoreaction products of the optically-induced dissolution and diffusion of silver in a thin-film chalcogenide. The microstructure, with two types of region and aligned nanocolumns, is present in the electrolyte after photodoping without any applied bias, and is important for understanding switching mechanisms, and writing and erasing cycles, in programmable-metallization-cell memory.
Název v anglickém jazyce
Preferred location for conducting filament formation in thin-film nano-ionic electrolyte: study of microstructure by atom-probe tomography
Popis výsledku anglicky
Atom-probe tomography of Ag-photodoped amorphous thin-film Ge40S60, the material of interest in nano-ionic memory and lateral geometry MEMS technologies, reveals regions with two distinct compositions on a nanometer length-scale. One type of region is Ag-rich and of a size typically extending beyond the measured sample volume of similar to 40 x 40 x 80 nm(3). These type-I regions contain aligned nanocolumns, similar to 5 nm wide, that are the likely location for reversible diffusion of Ag+ ions and associated growth/dissolution of conducting filaments. The nanocolumns become relatively Ag-rich during the photodoping, and the pattern of Ag enrichment originates from the columnar-porous structure of the as-deposited film that is to some extent preserved in the electrolyte after photodoping. Type-II regions have lower Ag content, are typically 10-20 nm across, and appear to conform to the usual description of the photoreaction products of the optically-induced dissolution and diffusion of silver in a thin-film chalcogenide. The microstructure, with two types of region and aligned nanocolumns, is present in the electrolyte after photodoping without any applied bias, and is important for understanding switching mechanisms, and writing and erasing cycles, in programmable-metallization-cell memory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
<a href="/cs/project/LH14059" target="_blank" >LH14059: Elektrochemické metalizační cely ? nanoúrovňové paměti v tenkých vrstvách amorfních chalkogenidů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Science: Materials in Electronics
ISSN
0957-4522
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
6846-6851
Kód UT WoS článku
000399709300062
EID výsledku v databázi Scopus
—