Municipal Revenue Prediction by Ensembles of Neural Networks and Support Vector Machines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F10%3A39881977" target="_blank" >RIV/00216275:25410/10:39881977 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Municipal Revenue Prediction by Ensembles of Neural Networks and Support Vector Machines
Popis výsledku v původním jazyce
Municipalities have to to pay increasing attention to the importance of revenue prediction due to fiscal stress. Currently, judgmental, extrapolative, and deterministic models are used for municipal revenue prediction. In this paper we present the designs of neural network and support vector machine ensembles for a real-world regression problem, i.e. prediction of municipal revenue. Base learners, as well as linear regression models are used as benchmark methods. We prove that there is no single ensemble method suitable for this regression problem. However, the ensembles of support vector machines and neural networks outperformed the base learners and linear regression models significantly.
Název v anglickém jazyce
Municipal Revenue Prediction by Ensembles of Neural Networks and Support Vector Machines
Popis výsledku anglicky
Municipalities have to to pay increasing attention to the importance of revenue prediction due to fiscal stress. Currently, judgmental, extrapolative, and deterministic models are used for municipal revenue prediction. In this paper we present the designs of neural network and support vector machine ensembles for a real-world regression problem, i.e. prediction of municipal revenue. Base learners, as well as linear regression models are used as benchmark methods. We prove that there is no single ensemble method suitable for this regression problem. However, the ensembles of support vector machines and neural networks outperformed the base learners and linear regression models significantly.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
WSEAS Transactions on Computers
ISSN
1109-2750
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—