A Behavioural Analysis of Complexity in Socio-Technical Systems under Tension Modelled by Petri Nets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39910493" target="_blank" >RIV/00216275:25410/17:39910493 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.mdpi.com/1099-4300/19/11/572" target="_blank" >http://www.mdpi.com/1099-4300/19/11/572</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e19110572" target="_blank" >10.3390/e19110572</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Behavioural Analysis of Complexity in Socio-Technical Systems under Tension Modelled by Petri Nets
Popis výsledku v původním jazyce
Complexity analysis of dynamic systems provides a better understanding of the internal behaviours that are associated with tension and efficiency, which in the socio-technical systems may lead to innovation. One of the popular approaches for the assessment of complexity is associated with self-similarity. The dynamic component of dynamic systems represents the relationships and interactions among the inner elements (and its surroundings) and fully describes its behaviour. The approach used in this work addresses complexity analysis in terms of system behaviour, i.e., the so-called behavioural analysis of complexity. The self-similarity of a system (structural or behavioural) can be determined, for example, using fractal geometry, whose toolbox provides a number of methods for the measurement of the so-called fractal dimension. Other instruments for measuring the self-similarity in a system, include the Hurst exponent and the framework of complex system theory in general. The approach introduced in this work defines the complexity analysis in a social-technical system under tension. The proposed procedure consists of modelling the key dynamic components of a discrete event dynamic system by any definition of Petri nets. From the stationary probabilities, one can then decide whether the system is self-similar using the abovementioned tools. In addition, the proposed approach allows for finding the critical values (phase transitions) of the analysed systems.
Název v anglickém jazyce
A Behavioural Analysis of Complexity in Socio-Technical Systems under Tension Modelled by Petri Nets
Popis výsledku anglicky
Complexity analysis of dynamic systems provides a better understanding of the internal behaviours that are associated with tension and efficiency, which in the socio-technical systems may lead to innovation. One of the popular approaches for the assessment of complexity is associated with self-similarity. The dynamic component of dynamic systems represents the relationships and interactions among the inner elements (and its surroundings) and fully describes its behaviour. The approach used in this work addresses complexity analysis in terms of system behaviour, i.e., the so-called behavioural analysis of complexity. The self-similarity of a system (structural or behavioural) can be determined, for example, using fractal geometry, whose toolbox provides a number of methods for the measurement of the so-called fractal dimension. Other instruments for measuring the self-similarity in a system, include the Hurst exponent and the framework of complex system theory in general. The approach introduced in this work defines the complexity analysis in a social-technical system under tension. The proposed procedure consists of modelling the key dynamic components of a discrete event dynamic system by any definition of Petri nets. From the stationary probabilities, one can then decide whether the system is self-similar using the abovementioned tools. In addition, the proposed approach allows for finding the critical values (phase transitions) of the analysed systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000419006900006
EID výsledku v databázi Scopus
2-s2.0-85034270999