IVIFCM-TOPSIS for bank credit risk assessment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914914" target="_blank" >RIV/00216275:25410/19:39914914 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-13-8311-3_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-13-8311-3_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-13-8311-3_9" target="_blank" >10.1007/978-981-13-8311-3_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IVIFCM-TOPSIS for bank credit risk assessment
Popis výsledku v původním jazyce
Bank credit risk assessment is performed by credit rating agencies in order to reduce information asymmetry in financial markets. This costly process has been automated in earlier studies by using systems based on machine learning methods. However, such systems suffer from interpretability issues and do not utilize expert knowledge effectively. To overcome those problems, multi-criteria group decision-making (MCGDM) methods have recently been used to simulate the assessment process performed by the committee of multiple credit risk experts. However, standard MCGDM methods fail to consider high uncertainty inherently associated with the assessment and do not work effectively when the assessed credit risk criteria interact with each other. To address these issues, we propose MCGDM model for bank credit risk assessment that has two advantages: (1) The imprecise assessment criteria are represented by interval-valued intuitionistic fuzzy sets, and (2) the interactions among the criteria are modeled using fuzzy cognitive maps. When combined with traditional TOPSIS approach to ranking alternatives, we show that the proposed model can be effectively applied to assess bank credit risk.
Název v anglickém jazyce
IVIFCM-TOPSIS for bank credit risk assessment
Popis výsledku anglicky
Bank credit risk assessment is performed by credit rating agencies in order to reduce information asymmetry in financial markets. This costly process has been automated in earlier studies by using systems based on machine learning methods. However, such systems suffer from interpretability issues and do not utilize expert knowledge effectively. To overcome those problems, multi-criteria group decision-making (MCGDM) methods have recently been used to simulate the assessment process performed by the committee of multiple credit risk experts. However, standard MCGDM methods fail to consider high uncertainty inherently associated with the assessment and do not work effectively when the assessed credit risk criteria interact with each other. To address these issues, we propose MCGDM model for bank credit risk assessment that has two advantages: (1) The imprecise assessment criteria are represented by interval-valued intuitionistic fuzzy sets, and (2) the interactions among the criteria are modeled using fuzzy cognitive maps. When combined with traditional TOPSIS approach to ranking alternatives, we show that the proposed model can be effectively applied to assess bank credit risk.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-19590S" target="_blank" >GA16-19590S: Analýza témat a sentimentu vícenásobných textových zdrojů pro finanční rozhodování podniků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Decision Technologies 2019 : Proceedings of the 11th KES International Conference on Intelligent Decision Technologies (KES-IDT 2019), Vol. 1
ISBN
978-981-13-8310-6
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
10
Strana od-do
99-108
Název nakladatele
Springer Nature
Místo vydání
Heidelberg
Místo konání akce
St. Julians
Datum konání akce
17. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—