Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A novel multi-criteria group decision making algorithm for enhancing supply chain efficiency under high uncertainty during crisis based on q-rung orthopair fuzzy information

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F24%3A73625255" target="_blank" >RIV/61989592:15210/24:73625255 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.engappai.2024.108788" target="_blank" >https://doi.org/10.1016/j.engappai.2024.108788</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2024.108788" target="_blank" >10.1016/j.engappai.2024.108788</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A novel multi-criteria group decision making algorithm for enhancing supply chain efficiency under high uncertainty during crisis based on q-rung orthopair fuzzy information

  • Popis výsledku v původním jazyce

    In recent years, q-rung orthopair fuzzy sets (q-ROFSs) have been becoming gradually more advantageous in handling information with high uncertainty. Several multi-criteria group decision-making (MCGDM) algorithms under q-ROFS information have been proposed in literature and used to solve various real-life problems. How- ever, several shortcomings of some existing MCGDM algorithms under certain circumstances also emerged which limit their applicability. To overcome these challenges and deal with information under high uncertainty more accurately and reasonably, we propose a novel MCGDM algorithm under q-ROF information, i.e., (q-ROF- MCGDM), that retains the advantages of currently available methods, but extend its applicability by introducing a new q-rung orthopair fuzzy weighted averaging aggregation operator (q-ROFWAAO) along with a new entropy measure. The proposed q-ROF-MCGDM algorithm involves the steps: firstly, the input requirement in terms of alternatives, criteria and expert evaluations are required. Secondly, aggregating expert opinions using weights and normalizing decision matrices, and finally, calculating entropy weights and aggregating overall evaluations for final prioritization. Further, new operational laws have been developed and several necessary properties of the proposed q-ROFWAAO are also proved. Moreover, a sensitivity and comparative analysis has been carried out for validity and effectiveness of the proposed q-ROF-MCGDM algorithm. The proposed q-ROF-MCGDM algorithm has been implemented to enhance the efficiency of the United Arab Emirates (UAE) food industry under high uncertainty during the recent crisis. Finally, an evaluation of identifying and prioritizing the most severe food SC disruptions and appropriate mitigation strategies under crisis is provided to demonstrate applicability of the proposed q-ROF-MCGDM algorithm, and the obtained real case results confirm its usefulness. Findings of the study offer valuable insights to both food industry researchers and managers in developing effective recovery strategies, mitigating risks, and improving overall efficiency to ensure the survival of food businesses during the crisis.

  • Název v anglickém jazyce

    A novel multi-criteria group decision making algorithm for enhancing supply chain efficiency under high uncertainty during crisis based on q-rung orthopair fuzzy information

  • Popis výsledku anglicky

    In recent years, q-rung orthopair fuzzy sets (q-ROFSs) have been becoming gradually more advantageous in handling information with high uncertainty. Several multi-criteria group decision-making (MCGDM) algorithms under q-ROFS information have been proposed in literature and used to solve various real-life problems. How- ever, several shortcomings of some existing MCGDM algorithms under certain circumstances also emerged which limit their applicability. To overcome these challenges and deal with information under high uncertainty more accurately and reasonably, we propose a novel MCGDM algorithm under q-ROF information, i.e., (q-ROF- MCGDM), that retains the advantages of currently available methods, but extend its applicability by introducing a new q-rung orthopair fuzzy weighted averaging aggregation operator (q-ROFWAAO) along with a new entropy measure. The proposed q-ROF-MCGDM algorithm involves the steps: firstly, the input requirement in terms of alternatives, criteria and expert evaluations are required. Secondly, aggregating expert opinions using weights and normalizing decision matrices, and finally, calculating entropy weights and aggregating overall evaluations for final prioritization. Further, new operational laws have been developed and several necessary properties of the proposed q-ROFWAAO are also proved. Moreover, a sensitivity and comparative analysis has been carried out for validity and effectiveness of the proposed q-ROF-MCGDM algorithm. The proposed q-ROF-MCGDM algorithm has been implemented to enhance the efficiency of the United Arab Emirates (UAE) food industry under high uncertainty during the recent crisis. Finally, an evaluation of identifying and prioritizing the most severe food SC disruptions and appropriate mitigation strategies under crisis is provided to demonstrate applicability of the proposed q-ROF-MCGDM algorithm, and the obtained real case results confirm its usefulness. Findings of the study offer valuable insights to both food industry researchers and managers in developing effective recovery strategies, mitigating risks, and improving overall efficiency to ensure the survival of food businesses during the crisis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

  • ISSN

    0952-1976

  • e-ISSN

    1873-6769

  • Svazek periodika

    135

  • Číslo periodika v rámci svazku

    September 2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    26

  • Strana od-do

  • Kód UT WoS článku

    001253937900001

  • EID výsledku v databázi Scopus

    2-s2.0-85195667690