A Profit Function-Maximizing Inventory Backorder Prediction System Using Big Data Analytics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916134" target="_blank" >RIV/00216275:25410/20:39916134 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/9046037" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9046037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2983118" target="_blank" >10.1109/ACCESS.2020.2983118</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Profit Function-Maximizing Inventory Backorder Prediction System Using Big Data Analytics
Popis výsledku v původním jazyce
Inventory backorder prediction is widely recognized as an important component of inventory models. However, backorder prediction is traditionally based on stochastic approximation, thus neglecting the substantial amount of useful information hidden in historical inventory data. To provide those inventory models with a big data-driven backorder prediction, we propose a machine learning model equipped with an undersampling procedure to maximize the expected profit of backorder decisions. This is achieved by integrating the proposed profit-based measure into the prediction model and optimizing the decision threshold to identify the optimal backorder strategy. We show that the proposed inventory backorder prediction model shows better prediction and profit function performance than the state-of-the-art machine learning methods used for large imbalanced data. Notably, the proposed model is computationally effective and robust to variation in both warehousing/inventory cost and sales margin. In addition, the model predicts both major (non-backorder items) and minor (backorder items) classes in a benchmark dataset.
Název v anglickém jazyce
A Profit Function-Maximizing Inventory Backorder Prediction System Using Big Data Analytics
Popis výsledku anglicky
Inventory backorder prediction is widely recognized as an important component of inventory models. However, backorder prediction is traditionally based on stochastic approximation, thus neglecting the substantial amount of useful information hidden in historical inventory data. To provide those inventory models with a big data-driven backorder prediction, we propose a machine learning model equipped with an undersampling procedure to maximize the expected profit of backorder decisions. This is achieved by integrating the proposed profit-based measure into the prediction model and optimizing the decision threshold to identify the optimal backorder strategy. We show that the proposed inventory backorder prediction model shows better prediction and profit function performance than the state-of-the-art machine learning methods used for large imbalanced data. Notably, the proposed model is computationally effective and robust to variation in both warehousing/inventory cost and sales margin. In addition, the model predicts both major (non-backorder items) and minor (backorder items) classes in a benchmark dataset.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE ACCESS
ISSN
2169-3536
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
58982-58994
Kód UT WoS článku
000549806900002
EID výsledku v databázi Scopus
2-s2.0-85083078014