Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The role of automated evaluation techniques in online professional translator training

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917737" target="_blank" >RIV/00216275:25410/21:39917737 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://peerj.com/articles/cs-706/" target="_blank" >https://peerj.com/articles/cs-706/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/peerj-cs.706" target="_blank" >10.7717/peerj-cs.706</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The role of automated evaluation techniques in online professional translator training

  • Popis výsledku v původním jazyce

    The rapid technologisation of translation has influenced the translation industry&apos;s direction towards machine translation, post-editing, subtitling services and video content translation. Besides, the pandemic situation associated with COVID-19 has rapidly increased the transfer of business and education to the virtual world. This situation has motivated us not only to look for new approaches to online translator training, which requires a different method than learning foreign languages but in particular to look for new approaches to assess translator performance within online educational environments. Translation quality assessment is a key task, as the concept of quality is closely linked to the concept of optimization. Automatic metrics are very good indicators of quality, but they do not provide sufficient and detailed linguistic information about translations or post-edited machine translations. However, using their residuals, we can identify the segments with the largest distances between the post-edited machine translations and machine translations, which allow us to focus on a more detailed textual analysis of suspicious segments. We introduce a unique online teaching and learning system, which is specifically &quot;tailored&quot; for online translators&apos; training and subsequently we focus on a new approach to assess translators&apos; competences using evaluation techniques-the metrics of automatic evaluation and their residuals. We show that the residuals of the metrics of accuracy (BLEU_n) and error rate (PER, WER, TER, CDER, and HTER) for machine translation post-editing are valid for translator assessment. Using the residuals of the metrics of accuracy and error rate, we can identify errors in postediting (critical, major, and minor) and subsequently utilize them in more detailed linguistic analysis.

  • Název v anglickém jazyce

    The role of automated evaluation techniques in online professional translator training

  • Popis výsledku anglicky

    The rapid technologisation of translation has influenced the translation industry&apos;s direction towards machine translation, post-editing, subtitling services and video content translation. Besides, the pandemic situation associated with COVID-19 has rapidly increased the transfer of business and education to the virtual world. This situation has motivated us not only to look for new approaches to online translator training, which requires a different method than learning foreign languages but in particular to look for new approaches to assess translator performance within online educational environments. Translation quality assessment is a key task, as the concept of quality is closely linked to the concept of optimization. Automatic metrics are very good indicators of quality, but they do not provide sufficient and detailed linguistic information about translations or post-edited machine translations. However, using their residuals, we can identify the segments with the largest distances between the post-edited machine translations and machine translations, which allow us to focus on a more detailed textual analysis of suspicious segments. We introduce a unique online teaching and learning system, which is specifically &quot;tailored&quot; for online translators&apos; training and subsequently we focus on a new approach to assess translators&apos; competences using evaluation techniques-the metrics of automatic evaluation and their residuals. We show that the residuals of the metrics of accuracy (BLEU_n) and error rate (PER, WER, TER, CDER, and HTER) for machine translation post-editing are valid for translator assessment. Using the residuals of the metrics of accuracy and error rate, we can identify errors in postediting (critical, major, and minor) and subsequently utilize them in more detailed linguistic analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PeerJ Computer Science

  • ISSN

    2376-5992

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    4.10.2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    27

  • Strana od-do

    "e706"

  • Kód UT WoS článku

    000703684200001

  • EID výsledku v databázi Scopus

    2-s2.0-85117922663