Using of n-grams from morphological tags for fake news classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917745" target="_blank" >RIV/00216275:25410/21:39917745 - isvavai.cz</a>
Výsledek na webu
<a href="https://peerj.com/articles/cs-624/#" target="_blank" >https://peerj.com/articles/cs-624/#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7717/peerj-cs.624" target="_blank" >10.7717/peerj-cs.624</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using of n-grams from morphological tags for fake news classification
Popis výsledku v původním jazyce
Research of the techniques for effective fake news detection has become very needed and attractive. These techniques have a background in many research disciplines, including morphological analysis. Several researchers stated that simple content related n-grams and POS tagging had been proven insufficient for fake news classification. However, they did not realise any empirical research results, which could confirm these statements experimentally in the last decade. Considering this contradiction, the main aim of the paper is to experimentally evaluate the potential of the common use of n-grams and POS tags for the correct classification of fake and true news. The dataset of published fake or real news about the current Covid-19 pandemic was pre-processed using morphological analysis. As a result, n-grams of POS tags were prepared and further analysed. Three techniques based on POS tags were proposed and applied to different groups of n-grams in the pre-processing phase of fake news detection. The n-gram size was examined as the first. Subsequently, the most suitable depth of the decision trees for sufficient generalization was scoped. Finally, the performance measures of models based on the proposed techniques were compared with the standardised reference TF-IDF technique. The performance measures of the model like accuracy, precision, recall and f1-score are considered, together with the 10-fold cross-validation technique. Simultaneously, the question, whether the TF-IDF technique can be improved using POS tags was researched in detail. The results showed that the newly proposed techniques are comparable with the traditional TF-IDF technique. At the same time, it can be stated that the morphological analysis can improve the baseline TF-IDF technique. As a result, the performance measures of the model, precision for fake news and recall for real news, were statistically significantly improved.
Název v anglickém jazyce
Using of n-grams from morphological tags for fake news classification
Popis výsledku anglicky
Research of the techniques for effective fake news detection has become very needed and attractive. These techniques have a background in many research disciplines, including morphological analysis. Several researchers stated that simple content related n-grams and POS tagging had been proven insufficient for fake news classification. However, they did not realise any empirical research results, which could confirm these statements experimentally in the last decade. Considering this contradiction, the main aim of the paper is to experimentally evaluate the potential of the common use of n-grams and POS tags for the correct classification of fake and true news. The dataset of published fake or real news about the current Covid-19 pandemic was pre-processed using morphological analysis. As a result, n-grams of POS tags were prepared and further analysed. Three techniques based on POS tags were proposed and applied to different groups of n-grams in the pre-processing phase of fake news detection. The n-gram size was examined as the first. Subsequently, the most suitable depth of the decision trees for sufficient generalization was scoped. Finally, the performance measures of models based on the proposed techniques were compared with the standardised reference TF-IDF technique. The performance measures of the model like accuracy, precision, recall and f1-score are considered, together with the 10-fold cross-validation technique. Simultaneously, the question, whether the TF-IDF technique can be improved using POS tags was researched in detail. The results showed that the newly proposed techniques are comparable with the traditional TF-IDF technique. At the same time, it can be stated that the morphological analysis can improve the baseline TF-IDF technique. As a result, the performance measures of the model, precision for fake news and recall for real news, were statistically significantly improved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PeerJ Computer Science
ISSN
2376-5992
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
19.7.2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
"e624"
Kód UT WoS článku
000700069900001
EID výsledku v databázi Scopus
2-s2.0-85112643670