Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gender recognition based on hand thermal characteristic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39918922" target="_blank" >RIV/00216275:25410/22:39918922 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://aip.vse.cz/artkey/aip-202202-0004_gender-recognition-based-on-hand-thermal-characteristic.php" target="_blank" >http://aip.vse.cz/artkey/aip-202202-0004_gender-recognition-based-on-hand-thermal-characteristic.php</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18267/j.aip.180" target="_blank" >10.18267/j.aip.180</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gender recognition based on hand thermal characteristic

  • Popis výsledku v původním jazyce

    Automatic gender recognition is one of the frequently solved tasks in computer vision. It is useful for analysing human behaviour, intelligent monitoring, or security. In this article, gender is recognized based on multispectral images of the hand. Hand images (palm and back) are obtained in the visible spectrum and thermal spectrum; then a fusion of images is performed. Some studies say that it is possible to distinguish male and female hands by some geometric features of the hand. The aim of this article is to determine whether it is possible to recognize gender by the thermal characteristics of the hand and at the same time, to find the best architecture for this recognition. The article compares several algorithms that can be used to resolve this issue. The Convolutional Neural Network - AlexNet is used for features extraction. Support Vector Machine (SVM), Linear Discriminant, Naive Bayes Classifier, and Neural Networks were used for subsequent classification. Only CNNs were used for both extraction and subsequent classification. All of these methods lead to the high accuracy of gender recognition. However, the most accurate are the Convolutional Neural Networks VGG-16 and VGG-19. The accuracy of gender recognition (test data) is 94.9% for the palm and 89.9% for the back. Experiments in comparative studies have shown promising results and have shown that multispectral hand images (thermal and visible) can be beneficial in gender recognition.

  • Název v anglickém jazyce

    Gender recognition based on hand thermal characteristic

  • Popis výsledku anglicky

    Automatic gender recognition is one of the frequently solved tasks in computer vision. It is useful for analysing human behaviour, intelligent monitoring, or security. In this article, gender is recognized based on multispectral images of the hand. Hand images (palm and back) are obtained in the visible spectrum and thermal spectrum; then a fusion of images is performed. Some studies say that it is possible to distinguish male and female hands by some geometric features of the hand. The aim of this article is to determine whether it is possible to recognize gender by the thermal characteristics of the hand and at the same time, to find the best architecture for this recognition. The article compares several algorithms that can be used to resolve this issue. The Convolutional Neural Network - AlexNet is used for features extraction. Support Vector Machine (SVM), Linear Discriminant, Naive Bayes Classifier, and Neural Networks were used for subsequent classification. Only CNNs were used for both extraction and subsequent classification. All of these methods lead to the high accuracy of gender recognition. However, the most accurate are the Convolutional Neural Networks VGG-16 and VGG-19. The accuracy of gender recognition (test data) is 94.9% for the palm and 89.9% for the back. Experiments in comparative studies have shown promising results and have shown that multispectral hand images (thermal and visible) can be beneficial in gender recognition.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Informatica Pragensia

  • ISSN

    1805-4951

  • e-ISSN

    1805-4951

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    13

  • Strana od-do

    205-217

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85137407903