Thermal-based gender recognition using drones: advancing biometric recognition in challenging outdoor environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39921878" target="_blank" >RIV/00216275:25410/24:39921878 - isvavai.cz</a>
Výsledek na webu
<a href="https://cdnsciencepub.com/doi/10.1139/dsa-2023-0075" target="_blank" >https://cdnsciencepub.com/doi/10.1139/dsa-2023-0075</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1139/dsa-2023-0075" target="_blank" >10.1139/dsa-2023-0075</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thermal-based gender recognition using drones: advancing biometric recognition in challenging outdoor environments
Popis výsledku v původním jazyce
While biometric recognition typically uses features such as face, fingerprint, and iris to identify individuals, this study focuses on utilising specific characteristics to identify gender. The aim of this article is to propose a procedure for gender recognition under specific conditions. The specific condition addressed is outdoor area monitoring, which presents challenges such as varying lighting conditions and limited camera placement options. To tackle this, a proposed procedure utilises thermal images captured by the drone equipped with a thermal camera. The advantage of thermal images is their independence from ambient light conditions. The captured images are resized and processed using convolutional neural networks (CNNs) (AlexNet, VGG-16, VGG-19) for feature extraction and binary classification. A freely available database of thermal face images is used for training the CNNs, while a own created dataset of thermal images obtained by the drone is used for testing. The findings indicate that the optimised CNNs achieve classification accuracies of 82.4% (VGG-16), 82.9% (AlexNet), and 85.5% (VGG-19). The original contribution of this study lies in demonstrating the suitability of face thermal images obtained through drones for gender recognition purposes.
Název v anglickém jazyce
Thermal-based gender recognition using drones: advancing biometric recognition in challenging outdoor environments
Popis výsledku anglicky
While biometric recognition typically uses features such as face, fingerprint, and iris to identify individuals, this study focuses on utilising specific characteristics to identify gender. The aim of this article is to propose a procedure for gender recognition under specific conditions. The specific condition addressed is outdoor area monitoring, which presents challenges such as varying lighting conditions and limited camera placement options. To tackle this, a proposed procedure utilises thermal images captured by the drone equipped with a thermal camera. The advantage of thermal images is their independence from ambient light conditions. The captured images are resized and processed using convolutional neural networks (CNNs) (AlexNet, VGG-16, VGG-19) for feature extraction and binary classification. A freely available database of thermal face images is used for training the CNNs, while a own created dataset of thermal images obtained by the drone is used for testing. The findings indicate that the optimised CNNs achieve classification accuracies of 82.4% (VGG-16), 82.9% (AlexNet), and 85.5% (VGG-19). The original contribution of this study lies in demonstrating the suitability of face thermal images obtained through drones for gender recognition purposes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Drone Systems and Applications
ISSN
2564-4939
e-ISSN
2564-4939
Svazek periodika
12
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
001264010100001
EID výsledku v databázi Scopus
2-s2.0-85199621964