Low-cost system for gender recognition using convolutional neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914546" target="_blank" >RIV/00216275:25410/19:39914546 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Low-cost system for gender recognition using convolutional neural network
Popis výsledku v původním jazyce
Gender recognition of human face images is an important task in computer vision. The characters with the greatest gender diversity are the face and the pelvis, so the article uses face images to determine the gender. There are many reasons to automatically determine gender. One of them is visual surveillance. Other applications includes marketing, intelligent user interfaces, demographic studies. This paper presents a modern approach in identifying gender by using drones and specialized neural networks. This paper uses UAV data, it is a low cost data acquisition solution. The data has a very high resolution, so it is possible to obtain face cut-outs. Face cut-outs are then used to determine gender. The convolutional neural network AlexNet is used for classification. The system does not require any pre-processing and features extraction before classification. The experiments were performed on a database of 500 face images. Duplication of data was minimized due to the flight planned in advance. The obtained accuracy of gender recognition is 95.14%, 70% data was used for training.
Název v anglickém jazyce
Low-cost system for gender recognition using convolutional neural network
Popis výsledku anglicky
Gender recognition of human face images is an important task in computer vision. The characters with the greatest gender diversity are the face and the pelvis, so the article uses face images to determine the gender. There are many reasons to automatically determine gender. One of them is visual surveillance. Other applications includes marketing, intelligent user interfaces, demographic studies. This paper presents a modern approach in identifying gender by using drones and specialized neural networks. This paper uses UAV data, it is a low cost data acquisition solution. The data has a very high resolution, so it is possible to obtain face cut-outs. Face cut-outs are then used to determine gender. The convolutional neural network AlexNet is used for classification. The system does not require any pre-processing and features extraction before classification. The experiments were performed on a database of 500 face images. Duplication of data was minimized due to the flight planned in advance. The obtained accuracy of gender recognition is 95.14%, 70% data was used for training.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 34th International Business Information Management Association Conference. Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage, IBIMA 2019
ISBN
978-0-9998551-3-3
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
6316-6322
Název nakladatele
International Business Information Management Association-IBIMA
Místo vydání
Norristown
Místo konání akce
Madrid
Datum konání akce
13. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000556337408049