Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Low-cost system for gender recognition using convolutional neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914546" target="_blank" >RIV/00216275:25410/19:39914546 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Low-cost system for gender recognition using convolutional neural network

  • Popis výsledku v původním jazyce

    Gender recognition of human face images is an important task in computer vision. The characters with the greatest gender diversity are the face and the pelvis, so the article uses face images to determine the gender. There are many reasons to automatically determine gender. One of them is visual surveillance. Other applications includes marketing, intelligent user interfaces, demographic studies. This paper presents a modern approach in identifying gender by using drones and specialized neural networks. This paper uses UAV data, it is a low cost data acquisition solution. The data has a very high resolution, so it is possible to obtain face cut-outs. Face cut-outs are then used to determine gender. The convolutional neural network AlexNet is used for classification. The system does not require any pre-processing and features extraction before classification. The experiments were performed on a database of 500 face images. Duplication of data was minimized due to the flight planned in advance. The obtained accuracy of gender recognition is 95.14%, 70% data was used for training.

  • Název v anglickém jazyce

    Low-cost system for gender recognition using convolutional neural network

  • Popis výsledku anglicky

    Gender recognition of human face images is an important task in computer vision. The characters with the greatest gender diversity are the face and the pelvis, so the article uses face images to determine the gender. There are many reasons to automatically determine gender. One of them is visual surveillance. Other applications includes marketing, intelligent user interfaces, demographic studies. This paper presents a modern approach in identifying gender by using drones and specialized neural networks. This paper uses UAV data, it is a low cost data acquisition solution. The data has a very high resolution, so it is possible to obtain face cut-outs. Face cut-outs are then used to determine gender. The convolutional neural network AlexNet is used for classification. The system does not require any pre-processing and features extraction before classification. The experiments were performed on a database of 500 face images. Duplication of data was minimized due to the flight planned in advance. The obtained accuracy of gender recognition is 95.14%, 70% data was used for training.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 34th International Business Information Management Association Conference. Vision 2025: Education Excellence and Management of Innovations through Sustainable Economic Competitive Advantage, IBIMA 2019

  • ISBN

    978-0-9998551-3-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    6316-6322

  • Název nakladatele

    International Business Information Management Association-IBIMA

  • Místo vydání

    Norristown

  • Místo konání akce

    Madrid

  • Datum konání akce

    13. 11. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000556337408049