Gender recognition using thermal images from UAV
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F21%3A39917500" target="_blank" >RIV/00216275:25410/21:39917500 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9497627" target="_blank" >https://ieeexplore.ieee.org/document/9497627</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IDT52577.2021.9497627" target="_blank" >10.1109/IDT52577.2021.9497627</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gender recognition using thermal images from UAV
Popis výsledku v původním jazyce
Gender recognition is one of the issues that computer vision deals with. It is useful for analysing human behaviour, intelligent tracking, or human-robot interaction. The aim of this paper is to recognise the gender of people in outdoor areas, where it is very difficult or impossible to guard all access roads to the place, even in poor lighting conditions or in the dark. In this paper, a model will be designed and tested using a controlled UAV flight, during which images of people were obtained. The sensor is a thermal camera located on the UA V , which is not dependent on ambient lighting, and deep learning methods are used for subsequent image processing and classification. These are convolutional neural networks (AlexNet, GoogLeNet), which will be used to solve binary classification. Optimized networks achieve classification accuracy of 81.6 %% (GoogLeNet) and 82.3% (AlexNet). A freely available database [21] was used to learn CNNs, and a self-created database (images obtained with a thermal camera attached to a UAV) was used to test the networks.
Název v anglickém jazyce
Gender recognition using thermal images from UAV
Popis výsledku anglicky
Gender recognition is one of the issues that computer vision deals with. It is useful for analysing human behaviour, intelligent tracking, or human-robot interaction. The aim of this paper is to recognise the gender of people in outdoor areas, where it is very difficult or impossible to guard all access roads to the place, even in poor lighting conditions or in the dark. In this paper, a model will be designed and tested using a controlled UAV flight, during which images of people were obtained. The sensor is a thermal camera located on the UA V , which is not dependent on ambient lighting, and deep learning methods are used for subsequent image processing and classification. These are convolutional neural networks (AlexNet, GoogLeNet), which will be used to solve binary classification. Optimized networks achieve classification accuracy of 81.6 %% (GoogLeNet) and 82.3% (AlexNet). A freely available database [21] was used to learn CNNs, and a self-created database (images obtained with a thermal camera attached to a UAV) was used to test the networks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of The International Conference on Information and Digital Technologies 2021
ISBN
978-1-66543-692-2
ISSN
2575-677X
e-ISSN
—
Počet stran výsledku
6
Strana od-do
83-88
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
Žilina
Datum konání akce
22. 6. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—