Speech Emotion Recognition from Earnings Conference Calls in Predicting Corporate Financial Distress
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39919467" target="_blank" >RIV/00216275:25410/22:39919467 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-08333-4_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08333-4_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08333-4_18" target="_blank" >10.1007/978-3-031-08333-4_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speech Emotion Recognition from Earnings Conference Calls in Predicting Corporate Financial Distress
Popis výsledku v původním jazyce
Sentiment and emotion analysis is attracting considerable interest from researchers in the field of finance due to its capacity to provide additional insight into opinions and intentions of investors and managers. A remarkable improvement in predicting corporate financial performance has been achieved by considering textual sentiments. However, little is known about whether managerial affective states influence changes in overall corporate financial performance. To overcome this problem, we propose a deep learning architecture that uses vocal cues extracted from earnings conference calls to detect managerial emotional states and exploits these states to identify firms that could be financially distressed. Our findings provide evidence on the role of managerial emotional states in the early detection of corporate financial distress. We also show that the proposed deep learning-based prediction model outperforms state-of-the-art financial distress prediction models based solely on financial indicators.
Název v anglickém jazyce
Speech Emotion Recognition from Earnings Conference Calls in Predicting Corporate Financial Distress
Popis výsledku anglicky
Sentiment and emotion analysis is attracting considerable interest from researchers in the field of finance due to its capacity to provide additional insight into opinions and intentions of investors and managers. A remarkable improvement in predicting corporate financial performance has been achieved by considering textual sentiments. However, little is known about whether managerial affective states influence changes in overall corporate financial performance. To overcome this problem, we propose a deep learning architecture that uses vocal cues extracted from earnings conference calls to detect managerial emotional states and exploits these states to identify firms that could be financially distressed. Our findings provide evidence on the role of managerial emotional states in the early detection of corporate financial distress. We also show that the proposed deep learning-based prediction model outperforms state-of-the-art financial distress prediction models based solely on financial indicators.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IFIP Advances in Information and Communication Technology. Vol. 646
ISBN
978-3-031-08332-7
ISSN
1868-4238
e-ISSN
1868-422X
Počet stran výsledku
13
Strana od-do
216-228
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Hersonissos
Datum konání akce
17. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000928714700018