Corporate Financial Distress Prediction Using the Risk-related Information Content of Annual Reports
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922245" target="_blank" >RIV/00216275:25410/24:39922245 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0306457324001791" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0306457324001791</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ipm.2024.103820" target="_blank" >10.1016/j.ipm.2024.103820</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Corporate Financial Distress Prediction Using the Risk-related Information Content of Annual Reports
Popis výsledku v původním jazyce
This study presents a financial distress prediction model focusing on the linguistic analysis of risk-related sections of corporate annual reports. Here, we introduce a novel methodology that leverages BERT-based contextualized embedding models for nuanced extraction of financial sentiment and topic coherence. This stands in contrast to existing research, which predominantly relies on dictionary-based or non-contextual word embeddings and addresses their limitations in context sensitivity. Furthermore, we apply an innovative financial distress prediction model that combines the robust XGBoost algorithm with unsupervised outlier detection techniques. This hybrid model is specifically designed to tackle the issue of class imbalance, a persistent challenge in financial distress prediction. The efficacy of the proposed model is empirically validated using a comprehensive dataset of 2545 companies listed on major global stock exchanges. Our findings indicate that the introduced model not only significantly outperforms most existing state-of-the-art financial distress prediction models in terms of predictive accuracy, but also significantly outperforms the Loughran & McDonald dictionary-based approach and the Word2Vec model, underlining its potential as a superior analytical tool for financial distress prediction.
Název v anglickém jazyce
Corporate Financial Distress Prediction Using the Risk-related Information Content of Annual Reports
Popis výsledku anglicky
This study presents a financial distress prediction model focusing on the linguistic analysis of risk-related sections of corporate annual reports. Here, we introduce a novel methodology that leverages BERT-based contextualized embedding models for nuanced extraction of financial sentiment and topic coherence. This stands in contrast to existing research, which predominantly relies on dictionary-based or non-contextual word embeddings and addresses their limitations in context sensitivity. Furthermore, we apply an innovative financial distress prediction model that combines the robust XGBoost algorithm with unsupervised outlier detection techniques. This hybrid model is specifically designed to tackle the issue of class imbalance, a persistent challenge in financial distress prediction. The efficacy of the proposed model is empirically validated using a comprehensive dataset of 2545 companies listed on major global stock exchanges. Our findings indicate that the introduced model not only significantly outperforms most existing state-of-the-art financial distress prediction models in terms of predictive accuracy, but also significantly outperforms the Loughran & McDonald dictionary-based approach and the Word2Vec model, underlining its potential as a superior analytical tool for financial distress prediction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-22586S" target="_blank" >GA22-22586S: Aspektově orientovaná analýza sentimentu finančních textů pro predikci finanční výkonnosti podniku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Processing and Management
ISSN
0306-4573
e-ISSN
1873-5371
Svazek periodika
61
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
103820
Kód UT WoS článku
001347745100001
EID výsledku v databázi Scopus
2-s2.0-85196624576