Gaussian process regression ́s hyperparameters optimization to predict financial distress
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F75081431%3A_____%2F23%3A00002637" target="_blank" >RIV/75081431:_____/23:00002637 - isvavai.cz</a>
Výsledek na webu
<a href="https://retos.ups.edu.ec/index.php/retos/article/view/7417" target="_blank" >https://retos.ups.edu.ec/index.php/retos/article/view/7417</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian process regression ́s hyperparameters optimization to predict financial distress
Popis výsledku v původním jazyce
Predicting financial distress has become one of the most important topics of the hour that has swept the accounting and financial field due to its significant correlation with the development of science and technology. The main objective of this paper is to predict financial distress based on the Gaussian Process Regression (GPR) and then compare the results of this model with the results of other deep learning models (SVM, LR, LD, DT, KNN). The analysis is based on a dataset of 352 companies extracted from the Kaggle database. As for predictors, 83 financial ratios were used. The study concluded that the use of GPR achieves very relevant results. Furthermore, it outperformed the rest of the deep learning models and achieved first place equally with the SVM model with a classification accuracy of 81%. The results contribute to the maintenance of the integrated system and the prosperity of the country's economy, the prediction of the financial distress of companies and thus the potential prevention of disruption of the given system.
Název v anglickém jazyce
Gaussian process regression ́s hyperparameters optimization to predict financial distress
Popis výsledku anglicky
Predicting financial distress has become one of the most important topics of the hour that has swept the accounting and financial field due to its significant correlation with the development of science and technology. The main objective of this paper is to predict financial distress based on the Gaussian Process Regression (GPR) and then compare the results of this model with the results of other deep learning models (SVM, LR, LD, DT, KNN). The analysis is based on a dataset of 352 companies extracted from the Kaggle database. As for predictors, 83 financial ratios were used. The study concluded that the use of GPR achieves very relevant results. Furthermore, it outperformed the rest of the deep learning models and achieved first place equally with the SVM model with a classification accuracy of 81%. The results contribute to the maintenance of the integrated system and the prosperity of the country's economy, the prediction of the financial distress of companies and thus the potential prevention of disruption of the given system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RETOS-REVISTA DE CIENCIAS DE LA ADMINISTRACION Y ECONOMIA
ISSN
1390-6291
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
26
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
17
Strana od-do
273-289
Kód UT WoS článku
001077774200006
EID výsledku v databázi Scopus
—