Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experimental analysis of novel ionic liquid-MXene hybrid nanofluid's energy storage properties: Model-prediction using modern ensemble machine learning methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00358157" target="_blank" >RIV/68407700:21220/22:00358157 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.est.2022.104858" target="_blank" >https://doi.org/10.1016/j.est.2022.104858</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2022.104858" target="_blank" >10.1016/j.est.2022.104858</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experimental analysis of novel ionic liquid-MXene hybrid nanofluid's energy storage properties: Model-prediction using modern ensemble machine learning methods

  • Popis výsledku v původním jazyce

    The current work employs two modern ensemble machine learning algorithms, Matern 5/2 Gaussian process regression (GPR) and quadratic support vector regression (SVR), to model-predict the thermal conductivity, specific heat, and viscosity of novel Ionic liquid-MXene hybrid nanofluids. The data for model development was obtained in the lab at various temperatures and mass concentrations. The obtained thermal conductivity value for the pure aqueous Ionic liquid (IL) solution at 20 °C was 0.443 W/m⋅K which rose to 0.82 W/m⋅K due to the inclusion of 0.5 wt% MXene nanomaterial. The achieved result for the specific heat capacity of the pure aqueous IL solution is 1.985 J/g⋅K, while this value enhances up to 2.374 J/g⋅K due to the inclusion of the highest loading concentration (0.5 wt%) of MXene nanomaterial. The acquired data was divided into two portions, with 70% of the data utilized for model training and 30% (hold-out) data used for model testing. Several statistical indicators were used to evaluate the GPR and SVR-based prognostic models created for specific heat, viscosity, and thermal conductivity. For SVM models, the correlation coefficient (R) ranged from 0.9741 to 0.9958, while for GPR-based models, it ranged from 0.9942 to 0.9998. The inaccuracy in the prediction model was quantified using root mean squared error, which ranged from 0.0129 to 0.0398 for SVM-based models and 0.004 to 0.105 for GPR-based models. The predictive effectiveness of the models was tested using Willmott's Index of Agreement, which was 0.9833 to 0.999 for SVM-based models and 0.9834 to 0.9999 for GPR-based models, respectively. The close to unity regression coefficient, low model error, and good prediction effectiveness illustrate the robustness of both SVM and GPR prognostic models. However, the GPR outperformed the SVM on all the statistical indices. The experiment results were also used to compute the Mouromtseff number (<4) and Figure of merit (>1). The results showed that the studied nanofluids can successfully substitute water in specified applications for solar energy.

  • Název v anglickém jazyce

    Experimental analysis of novel ionic liquid-MXene hybrid nanofluid's energy storage properties: Model-prediction using modern ensemble machine learning methods

  • Popis výsledku anglicky

    The current work employs two modern ensemble machine learning algorithms, Matern 5/2 Gaussian process regression (GPR) and quadratic support vector regression (SVR), to model-predict the thermal conductivity, specific heat, and viscosity of novel Ionic liquid-MXene hybrid nanofluids. The data for model development was obtained in the lab at various temperatures and mass concentrations. The obtained thermal conductivity value for the pure aqueous Ionic liquid (IL) solution at 20 °C was 0.443 W/m⋅K which rose to 0.82 W/m⋅K due to the inclusion of 0.5 wt% MXene nanomaterial. The achieved result for the specific heat capacity of the pure aqueous IL solution is 1.985 J/g⋅K, while this value enhances up to 2.374 J/g⋅K due to the inclusion of the highest loading concentration (0.5 wt%) of MXene nanomaterial. The acquired data was divided into two portions, with 70% of the data utilized for model training and 30% (hold-out) data used for model testing. Several statistical indicators were used to evaluate the GPR and SVR-based prognostic models created for specific heat, viscosity, and thermal conductivity. For SVM models, the correlation coefficient (R) ranged from 0.9741 to 0.9958, while for GPR-based models, it ranged from 0.9942 to 0.9998. The inaccuracy in the prediction model was quantified using root mean squared error, which ranged from 0.0129 to 0.0398 for SVM-based models and 0.004 to 0.105 for GPR-based models. The predictive effectiveness of the models was tested using Willmott's Index of Agreement, which was 0.9833 to 0.999 for SVM-based models and 0.9834 to 0.9999 for GPR-based models, respectively. The close to unity regression coefficient, low model error, and good prediction effectiveness illustrate the robustness of both SVM and GPR prognostic models. However, the GPR outperformed the SVM on all the statistical indices. The experiment results were also used to compute the Mouromtseff number (<4) and Figure of merit (>1). The results showed that the studied nanofluids can successfully substitute water in specified applications for solar energy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

    2352-1538

  • Svazek periodika

    2022 (52)

  • Číslo periodika v rámci svazku

    05

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000807731100001

  • EID výsledku v databázi Scopus

    2-s2.0-85130572918