Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speech emotion recognition and text sentiment analysis for financial distress prediction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920759" target="_blank" >RIV/00216275:25410/23:39920759 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00521-023-08470-8#Fun" target="_blank" >https://link.springer.com/article/10.1007/s00521-023-08470-8#Fun</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-023-08470-8" target="_blank" >10.1007/s00521-023-08470-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speech emotion recognition and text sentiment analysis for financial distress prediction

  • Popis výsledku v původním jazyce

    In recent years, there has been an increasing interest in text sentiment analysis and speech emotion recognition in finance due to their potential to capture the intentions and opinions of corporate stakeholders, such as managers and investors. A considerable performance improvement in forecasting company financial performance was achieved by taking textual sentiment into account. However, far too little attention has been paid to managerial emotional states and their potential contribution to financial distress prediction. This study seeks to address this problem by proposing a deep learning architecture that uniquely combines managerial emotional states extracted using speech emotion recognition with FinBERT-based sentiment analysis of earnings conference call transcripts. Thus, the obtained information is fused with traditional financial indicators to achieve a more accurate prediction of financial distress. The proposed model is validated using 1278 earnings conference calls of the 40 largest US companies. The findings of this study provide evidence on the essential role of managerial emotions in predicting financial distress, even when compared with sentiment indicators obtained from text. The experimental results also demonstrate the high accuracy of the proposed model compared with state-of-the-art prediction models.

  • Název v anglickém jazyce

    Speech emotion recognition and text sentiment analysis for financial distress prediction

  • Popis výsledku anglicky

    In recent years, there has been an increasing interest in text sentiment analysis and speech emotion recognition in finance due to their potential to capture the intentions and opinions of corporate stakeholders, such as managers and investors. A considerable performance improvement in forecasting company financial performance was achieved by taking textual sentiment into account. However, far too little attention has been paid to managerial emotional states and their potential contribution to financial distress prediction. This study seeks to address this problem by proposing a deep learning architecture that uniquely combines managerial emotional states extracted using speech emotion recognition with FinBERT-based sentiment analysis of earnings conference call transcripts. Thus, the obtained information is fused with traditional financial indicators to achieve a more accurate prediction of financial distress. The proposed model is validated using 1278 earnings conference calls of the 40 largest US companies. The findings of this study provide evidence on the essential role of managerial emotions in predicting financial distress, even when compared with sentiment indicators obtained from text. The experimental results also demonstrate the high accuracy of the proposed model compared with state-of-the-art prediction models.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-22586S" target="_blank" >GA22-22586S: Aspektově orientovaná analýza sentimentu finančních textů pro predikci finanční výkonnosti podniku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

    1433-3058

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    29

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    21463-21477

  • Kód UT WoS článku

    000953614000004

  • EID výsledku v databázi Scopus

    2-s2.0-85150470351