Speech emotion recognition and text sentiment analysis for financial distress prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920759" target="_blank" >RIV/00216275:25410/23:39920759 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00521-023-08470-8#Fun" target="_blank" >https://link.springer.com/article/10.1007/s00521-023-08470-8#Fun</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-023-08470-8" target="_blank" >10.1007/s00521-023-08470-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Speech emotion recognition and text sentiment analysis for financial distress prediction
Popis výsledku v původním jazyce
In recent years, there has been an increasing interest in text sentiment analysis and speech emotion recognition in finance due to their potential to capture the intentions and opinions of corporate stakeholders, such as managers and investors. A considerable performance improvement in forecasting company financial performance was achieved by taking textual sentiment into account. However, far too little attention has been paid to managerial emotional states and their potential contribution to financial distress prediction. This study seeks to address this problem by proposing a deep learning architecture that uniquely combines managerial emotional states extracted using speech emotion recognition with FinBERT-based sentiment analysis of earnings conference call transcripts. Thus, the obtained information is fused with traditional financial indicators to achieve a more accurate prediction of financial distress. The proposed model is validated using 1278 earnings conference calls of the 40 largest US companies. The findings of this study provide evidence on the essential role of managerial emotions in predicting financial distress, even when compared with sentiment indicators obtained from text. The experimental results also demonstrate the high accuracy of the proposed model compared with state-of-the-art prediction models.
Název v anglickém jazyce
Speech emotion recognition and text sentiment analysis for financial distress prediction
Popis výsledku anglicky
In recent years, there has been an increasing interest in text sentiment analysis and speech emotion recognition in finance due to their potential to capture the intentions and opinions of corporate stakeholders, such as managers and investors. A considerable performance improvement in forecasting company financial performance was achieved by taking textual sentiment into account. However, far too little attention has been paid to managerial emotional states and their potential contribution to financial distress prediction. This study seeks to address this problem by proposing a deep learning architecture that uniquely combines managerial emotional states extracted using speech emotion recognition with FinBERT-based sentiment analysis of earnings conference call transcripts. Thus, the obtained information is fused with traditional financial indicators to achieve a more accurate prediction of financial distress. The proposed model is validated using 1278 earnings conference calls of the 40 largest US companies. The findings of this study provide evidence on the essential role of managerial emotions in predicting financial distress, even when compared with sentiment indicators obtained from text. The experimental results also demonstrate the high accuracy of the proposed model compared with state-of-the-art prediction models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-22586S" target="_blank" >GA22-22586S: Aspektově orientovaná analýza sentimentu finančních textů pro predikci finanční výkonnosti podniku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
1433-3058
Svazek periodika
35
Číslo periodika v rámci svazku
29
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
21463-21477
Kód UT WoS článku
000953614000004
EID výsledku v databázi Scopus
2-s2.0-85150470351