Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920840" target="_blank" >RIV/00216275:25410/23:39920840 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10796-022-10346-6" target="_blank" >https://link.springer.com/article/10.1007/s10796-022-10346-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10796-022-10346-6" target="_blank" >10.1007/s10796-022-10346-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework
Popis výsledku v původním jazyce
Mobile payment systems are becoming more popular due to the increase in the number of smartphones, which, in turn, attracts the interest of fraudsters. Extant research has therefore developed various fraud detection methods using supervised machine learning. However, sufficient labeled data are rarely available and their detection performance is negatively affected by the extreme class imbalance in financial fraud data. The purpose of this study is to propose an XGBoost-based fraud detection framework while considering the financial consequences of fraud detection systems. The framework was empirically validated on a large dataset of more than 6 million mobile transactions. To demonstrate the effectiveness of the proposed framework, we conducted a comparative evaluation of existing machine learning methods designed for modeling imbalanced data and outlier detection. The results suggest that in terms of standard classification measures, the proposed semi-supervised ensemble model integrating multiple unsupervised outlier detection algorithms and an XGBoost classifier achieves the best results, while the highest cost savings can be achieved by combining random under-sampling and XGBoost methods. This study has therefore financial implications for organizations to make appropriate decisions regarding the implementation of effective fraud detection systems.
Název v anglickém jazyce
Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework
Popis výsledku anglicky
Mobile payment systems are becoming more popular due to the increase in the number of smartphones, which, in turn, attracts the interest of fraudsters. Extant research has therefore developed various fraud detection methods using supervised machine learning. However, sufficient labeled data are rarely available and their detection performance is negatively affected by the extreme class imbalance in financial fraud data. The purpose of this study is to propose an XGBoost-based fraud detection framework while considering the financial consequences of fraud detection systems. The framework was empirically validated on a large dataset of more than 6 million mobile transactions. To demonstrate the effectiveness of the proposed framework, we conducted a comparative evaluation of existing machine learning methods designed for modeling imbalanced data and outlier detection. The results suggest that in terms of standard classification measures, the proposed semi-supervised ensemble model integrating multiple unsupervised outlier detection algorithms and an XGBoost classifier achieves the best results, while the highest cost savings can be achieved by combining random under-sampling and XGBoost methods. This study has therefore financial implications for organizations to make appropriate decisions regarding the implementation of effective fraud detection systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Systems Frontiers
ISSN
1387-3326
e-ISSN
1572-9419
Svazek periodika
25
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
1985-2003
Kód UT WoS článku
000867540400001
EID výsledku v databázi Scopus
2-s2.0-85139775639