Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920840" target="_blank" >RIV/00216275:25410/23:39920840 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10796-022-10346-6" target="_blank" >https://link.springer.com/article/10.1007/s10796-022-10346-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10796-022-10346-6" target="_blank" >10.1007/s10796-022-10346-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework

  • Popis výsledku v původním jazyce

    Mobile payment systems are becoming more popular due to the increase in the number of smartphones, which, in turn, attracts the interest of fraudsters. Extant research has therefore developed various fraud detection methods using supervised machine learning. However, sufficient labeled data are rarely available and their detection performance is negatively affected by the extreme class imbalance in financial fraud data. The purpose of this study is to propose an XGBoost-based fraud detection framework while considering the financial consequences of fraud detection systems. The framework was empirically validated on a large dataset of more than 6 million mobile transactions. To demonstrate the effectiveness of the proposed framework, we conducted a comparative evaluation of existing machine learning methods designed for modeling imbalanced data and outlier detection. The results suggest that in terms of standard classification measures, the proposed semi-supervised ensemble model integrating multiple unsupervised outlier detection algorithms and an XGBoost classifier achieves the best results, while the highest cost savings can be achieved by combining random under-sampling and XGBoost methods. This study has therefore financial implications for organizations to make appropriate decisions regarding the implementation of effective fraud detection systems.

  • Název v anglickém jazyce

    Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework

  • Popis výsledku anglicky

    Mobile payment systems are becoming more popular due to the increase in the number of smartphones, which, in turn, attracts the interest of fraudsters. Extant research has therefore developed various fraud detection methods using supervised machine learning. However, sufficient labeled data are rarely available and their detection performance is negatively affected by the extreme class imbalance in financial fraud data. The purpose of this study is to propose an XGBoost-based fraud detection framework while considering the financial consequences of fraud detection systems. The framework was empirically validated on a large dataset of more than 6 million mobile transactions. To demonstrate the effectiveness of the proposed framework, we conducted a comparative evaluation of existing machine learning methods designed for modeling imbalanced data and outlier detection. The results suggest that in terms of standard classification measures, the proposed semi-supervised ensemble model integrating multiple unsupervised outlier detection algorithms and an XGBoost classifier achieves the best results, while the highest cost savings can be achieved by combining random under-sampling and XGBoost methods. This study has therefore financial implications for organizations to make appropriate decisions regarding the implementation of effective fraud detection systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Systems Frontiers

  • ISSN

    1387-3326

  • e-ISSN

    1572-9419

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    19

  • Strana od-do

    1985-2003

  • Kód UT WoS článku

    000867540400001

  • EID výsledku v databázi Scopus

    2-s2.0-85139775639