Machine Learning Method for Changepoint Detection in Short Time Series Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150028" target="_blank" >RIV/00216305:26210/23:PU150028 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2504-4990/5/4/71" target="_blank" >https://www.mdpi.com/2504-4990/5/4/71</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/make5040071" target="_blank" >10.3390/make5040071</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Method for Changepoint Detection in Short Time Series Data
Popis výsledku v původním jazyce
Analysis of data is crucial in waste management to improve effective planning from both short- and long-term perspectives. Real-world data often presents anomalies, but in the waste management sector, anomaly detection is seldom performed. The main goal and contribution of this paper is a proposal of a complex machine learning framework for changepoint detection in a large number of short time series from waste management. In such a case, it is not possible to use only an expert-based approach due to the time-consuming nature of this process and subjectivity. The proposed framework consists of two steps: (1) outlier detection via outlier test for trend-adjusted data, and (2) changepoints are identified via comparison of linear model parameters. In order to use the proposed method, it is necessary to have a sufficient number of experts’ assessments of the presence of anomalies in time series. The proposed framework is demonstrated on waste management data from the Czech Republic. It is observed that certain waste categories in specific regions frequently exhibit changepoints. On the micro-regional level, approximately 31.1% of time series contain at least one outlier and 16.4% exhibit changepoints. Certain groups of waste are more prone to the occurrence of anomalies. The results indicate that even in the case of aggregated data, anomalies are not rare, and their presence should always be checked.
Název v anglickém jazyce
Machine Learning Method for Changepoint Detection in Short Time Series Data
Popis výsledku anglicky
Analysis of data is crucial in waste management to improve effective planning from both short- and long-term perspectives. Real-world data often presents anomalies, but in the waste management sector, anomaly detection is seldom performed. The main goal and contribution of this paper is a proposal of a complex machine learning framework for changepoint detection in a large number of short time series from waste management. In such a case, it is not possible to use only an expert-based approach due to the time-consuming nature of this process and subjectivity. The proposed framework consists of two steps: (1) outlier detection via outlier test for trend-adjusted data, and (2) changepoints are identified via comparison of linear model parameters. In order to use the proposed method, it is necessary to have a sufficient number of experts’ assessments of the presence of anomalies in time series. The proposed framework is demonstrated on waste management data from the Czech Republic. It is observed that certain waste categories in specific regions frequently exhibit changepoints. On the micro-regional level, approximately 31.1% of time series contain at least one outlier and 16.4% exhibit changepoints. Certain groups of waste are more prone to the occurrence of anomalies. The results indicate that even in the case of aggregated data, anomalies are not rare, and their presence should always be checked.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Learning and Knowledge Extraction
ISSN
2504-4990
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
1407-1432
Kód UT WoS článku
001130875400001
EID výsledku v databázi Scopus
2-s2.0-85180490104