Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generalised linear model-based algorithm for detection of outliers in environmental data and comparison with semi-parametric outlier detection methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F19%3A43915809" target="_blank" >RIV/62156489:43110/19:43915809 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60162694:G42__/19:00536896

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.apr.2019.01.010" target="_blank" >https://doi.org/10.1016/j.apr.2019.01.010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apr.2019.01.010" target="_blank" >10.1016/j.apr.2019.01.010</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generalised linear model-based algorithm for detection of outliers in environmental data and comparison with semi-parametric outlier detection methods

  • Popis výsledku v původním jazyce

    Outliers are often present in large datasets of air pollutant concentrations. Existing methods for detection of outliers in environmental data can be divided as follows into three groups depending on the character of the data: methods for time series, methods for time series measured simultaneously with accompanying variables and methods for spatial data. A number of methods suggested for the automatic detection of outliers in time series data are limited by assumptions of known distribution of the analysed variable. Since the environmental variables are often influenced by accompanying factors their distribution is difficult to estimate. Considering the known information about accompanying variables and using appropriate methods for detection of outliers in time series measured simultaneously with accompanying variables can be a significant improvement in outlier detection approaches. This paper presents a method for the automatic detection of outliers in PM10 aerosols measured simultaneously with accompanying variables. The method is based on generalised linear model and subsequent analysis of the residuals. The method makes use of the benefits from the additional information included in the accessibility of accompanying variables. The results of the suggested procedure are compared with the results obtained using two distribution-free outlier detection methods for time series formerly suggested by the authors. The simulations-based comparison of the performance of all three procedures showed that the procedure presented in this paper effectively detects outliers that deviate at least 5 standard deviations from the mean value of the neighbouring observations and outperforms both distribution-free outlier detection methods for time series.

  • Název v anglickém jazyce

    Generalised linear model-based algorithm for detection of outliers in environmental data and comparison with semi-parametric outlier detection methods

  • Popis výsledku anglicky

    Outliers are often present in large datasets of air pollutant concentrations. Existing methods for detection of outliers in environmental data can be divided as follows into three groups depending on the character of the data: methods for time series, methods for time series measured simultaneously with accompanying variables and methods for spatial data. A number of methods suggested for the automatic detection of outliers in time series data are limited by assumptions of known distribution of the analysed variable. Since the environmental variables are often influenced by accompanying factors their distribution is difficult to estimate. Considering the known information about accompanying variables and using appropriate methods for detection of outliers in time series measured simultaneously with accompanying variables can be a significant improvement in outlier detection approaches. This paper presents a method for the automatic detection of outliers in PM10 aerosols measured simultaneously with accompanying variables. The method is based on generalised linear model and subsequent analysis of the residuals. The method makes use of the benefits from the additional information included in the accessibility of accompanying variables. The results of the suggested procedure are compared with the results obtained using two distribution-free outlier detection methods for time series formerly suggested by the authors. The simulations-based comparison of the performance of all three procedures showed that the procedure presented in this paper effectively detects outliers that deviate at least 5 standard deviations from the mean value of the neighbouring observations and outperforms both distribution-free outlier detection methods for time series.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmospheric Pollution Research

  • ISSN

    1309-1042

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    TR - Turecká republika

  • Počet stran výsledku

    9

  • Strana od-do

    1015-1023

  • Kód UT WoS článku

    000472996900002

  • EID výsledku v databázi Scopus

    2-s2.0-85067862378