Nonparametric algorithm for identification of outliers in environmental data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F18%3A43913063" target="_blank" >RIV/62156489:43110/18:43913063 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081715:_____/18:00490001 RIV/60162694:G42__/18:00534993
Výsledek na webu
<a href="http://dx.doi.org/10.1002/cem.2997" target="_blank" >http://dx.doi.org/10.1002/cem.2997</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cem.2997" target="_blank" >10.1002/cem.2997</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonparametric algorithm for identification of outliers in environmental data
Popis výsledku v původním jazyce
Outliers that can significantly affect data analysis are frequently present in environmental data sets. Most methods suggested for the detection of outliers impose restrictions on the distribution of analysed variables. However, in many environmental areas, the observed variable is influenced by a lot of different factors and its distribution is often difficult to find or cannot be estimated. Therefore, an approach for the identification of outliers in environmental time series based on nonparametric statistical techniques is presented. The core principle of the algorithm is to smoothen the data using nonparametric regression with variable bandwidth and subsequently analyse the residuals by nonparametric statistical methods. In the case that the distribution of the analysed variable is normal an efficient statistical method based on normality assumptions is presented as well. The proposed procedure is applied for the identification of outliers in hourly concentrations of particulate matter and verified by simulations.
Název v anglickém jazyce
Nonparametric algorithm for identification of outliers in environmental data
Popis výsledku anglicky
Outliers that can significantly affect data analysis are frequently present in environmental data sets. Most methods suggested for the detection of outliers impose restrictions on the distribution of analysed variables. However, in many environmental areas, the observed variable is influenced by a lot of different factors and its distribution is often difficult to find or cannot be estimated. Therefore, an approach for the identification of outliers in environmental time series based on nonparametric statistical techniques is presented. The core principle of the algorithm is to smoothen the data using nonparametric regression with variable bandwidth and subsequently analyse the residuals by nonparametric statistical methods. In the case that the distribution of the analysed variable is normal an efficient statistical method based on normality assumptions is presented as well. The proposed procedure is applied for the identification of outliers in hourly concentrations of particulate matter and verified by simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemometrics
ISSN
0886-9383
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
"Nestrankovano"
Kód UT WoS článku
000434126600009
EID výsledku v databázi Scopus
2-s2.0-85041067993