Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semiparametric outlier detection in nonstationary times series: Case study for atmospheric pollution in Brno, Czech Republic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F18%3A43912662" target="_blank" >RIV/62156489:43110/18:43912662 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60162694:G42__/18:00534192 RIV/00216305:26110/18:PU123965

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.apr.2017.06.005" target="_blank" >https://doi.org/10.1016/j.apr.2017.06.005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apr.2017.06.005" target="_blank" >10.1016/j.apr.2017.06.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semiparametric outlier detection in nonstationary times series: Case study for atmospheric pollution in Brno, Czech Republic

  • Popis výsledku v původním jazyce

    Large environmental datasets usually include outliers which can have significant effects on further analysis and modelling. There exist various outlier detection methods that depend on the distribution of the analysed variable. However quite often the distribution of environmental variables can not be estimated. This paper presents an approach for identification of outliers in environmental time series which does not impose restrictions on the distribution of observed variables. The suggested algorithm combines kernel smoothing and extreme value estimation techniques for stochastic processes within considerations of nonstationary expected value of the process. The nonstationarity in variance is evaded by change point analysis which precedes the proposed algorithm. Possible outliers are identified as observations with rare occurrence and, in correspondence to extreme value methodology, the confidence limits for high values of observed variables are constructed. The proposed methodology can be especially convenient for cases where validation of the data has to be carried out manually, since it significantly reduces the number of implausible observations. For a case study, the technique is applied for outlier detection in time series of hourly PM10 concentrations in Brno, Czech Republic. The methodology is derived on solid theoretical results and seems to perform well for the series of PM10. However its flexibility makes it generally applicable not only to series of atmospheric pollutants. On the other hand, the choice of return level turns out to be crucial in sensitivity to the outliers. This issue should be left to the practitioners to decide with respect to specific application conditions.

  • Název v anglickém jazyce

    Semiparametric outlier detection in nonstationary times series: Case study for atmospheric pollution in Brno, Czech Republic

  • Popis výsledku anglicky

    Large environmental datasets usually include outliers which can have significant effects on further analysis and modelling. There exist various outlier detection methods that depend on the distribution of the analysed variable. However quite often the distribution of environmental variables can not be estimated. This paper presents an approach for identification of outliers in environmental time series which does not impose restrictions on the distribution of observed variables. The suggested algorithm combines kernel smoothing and extreme value estimation techniques for stochastic processes within considerations of nonstationary expected value of the process. The nonstationarity in variance is evaded by change point analysis which precedes the proposed algorithm. Possible outliers are identified as observations with rare occurrence and, in correspondence to extreme value methodology, the confidence limits for high values of observed variables are constructed. The proposed methodology can be especially convenient for cases where validation of the data has to be carried out manually, since it significantly reduces the number of implausible observations. For a case study, the technique is applied for outlier detection in time series of hourly PM10 concentrations in Brno, Czech Republic. The methodology is derived on solid theoretical results and seems to perform well for the series of PM10. However its flexibility makes it generally applicable not only to series of atmospheric pollutants. On the other hand, the choice of return level turns out to be crucial in sensitivity to the outliers. This issue should be left to the practitioners to decide with respect to specific application conditions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmospheric Pollution Research

  • ISSN

    1309-1042

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    TR - Turecká republika

  • Počet stran výsledku

    10

  • Strana od-do

    27-36

  • Kód UT WoS článku

    000429175800003

  • EID výsledku v databázi Scopus

    2-s2.0-85020848643