Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Outlier identification based on local extreme quantile estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F16%3APU119354" target="_blank" >RIV/00216305:26110/16:PU119354 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Outlier identification based on local extreme quantile estimation

  • Popis výsledku v původním jazyce

    An extensive time series observations serve for an input in wide range of technical, economical and environmental application areas. However, the verification of validity of such data is necessary condition for any further analysis. Correctness of the data can be proven with respect to various criteria, mainly the attention is focused on detecting possible outliers in the series. Among others, these comprise observations corrupted by failure of any measuring instrument or influence of other than the quantity of interest. In this contribution we present an advanced technique for time series outlier detection based on extreme value analysis. Extreme value theory is being successfully applied in many branches, and hence provides an adequate framework for detection of rare events such as outliers. The suitability of the method proposed is also discussed with respect to eventual automation of the whole procedure. The method was applied for validation of hourly air pollution data obtained in Brno, Czech Republic. The measurements were provided by automated instruments at locations with high traffic and industrial load. The proposed method might simplify the procedure of such extensive data verification.

  • Název v anglickém jazyce

    Outlier identification based on local extreme quantile estimation

  • Popis výsledku anglicky

    An extensive time series observations serve for an input in wide range of technical, economical and environmental application areas. However, the verification of validity of such data is necessary condition for any further analysis. Correctness of the data can be proven with respect to various criteria, mainly the attention is focused on detecting possible outliers in the series. Among others, these comprise observations corrupted by failure of any measuring instrument or influence of other than the quantity of interest. In this contribution we present an advanced technique for time series outlier detection based on extreme value analysis. Extreme value theory is being successfully applied in many branches, and hence provides an adequate framework for detection of rare events such as outliers. The suitability of the method proposed is also discussed with respect to eventual automation of the whole procedure. The method was applied for validation of hourly air pollution data obtained in Brno, Czech Republic. The measurements were provided by automated instruments at locations with high traffic and industrial load. The proposed method might simplify the procedure of such extensive data verification.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 22nd International Conference on Soft Computing MENDEL 2016

  • ISBN

    978-80-214-5365-4

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    255-260

  • Název nakladatele

    Brno University of Technology

  • Místo vydání

    Brno, Czech Republic

  • Místo konání akce

    Brno

  • Datum konání akce

    8. 6. 2016

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku