Anomaly detection for short time series data in waste management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F21%3APU143627" target="_blank" >RIV/00216305:26210/21:PU143627 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomaly detection for short time series data in waste management
Popis výsledku v původním jazyce
Anomaly detection is a very important step in every analysis of real-world data. Presence of the anomalies may strongly affect results of both tested hypotheses and created models. Data analysis is important in waste management to improve effective planning from both short- and long-term perspective. However, in the field of waste management, anomaly detection is rarely done. The goal of our paper is to propose a complex framework for anomaly detection in a big number of short time series. In such a case, it is not possible to use only an expert-based approach due to the time-consuming nature of this process and subjectivity. Proposed framework consists of two steps: 1. outlier detection via outlier test for trend adjusted data, 2. changepoints (trend changepoint, step changepoint) are identified via comparison of linear model parameters. Proposed framework is demonstrated on waste management data from the Czech Republic.
Název v anglickém jazyce
Anomaly detection for short time series data in waste management
Popis výsledku anglicky
Anomaly detection is a very important step in every analysis of real-world data. Presence of the anomalies may strongly affect results of both tested hypotheses and created models. Data analysis is important in waste management to improve effective planning from both short- and long-term perspective. However, in the field of waste management, anomaly detection is rarely done. The goal of our paper is to propose a complex framework for anomaly detection in a big number of short time series. In such a case, it is not possible to use only an expert-based approach due to the time-consuming nature of this process and subjectivity. Proposed framework consists of two steps: 1. outlier detection via outlier test for trend adjusted data, 2. changepoints (trend changepoint, step changepoint) are identified via comparison of linear model parameters. Proposed framework is demonstrated on waste management data from the Czech Republic.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů