Cryptocurrency price forecasting - A comparative analysis of ensemble learning and deep learning methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F24%3A39922534" target="_blank" >RIV/00216275:25410/24:39922534 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1057521923005719#ac0005" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1057521923005719#ac0005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.irfa.2023.103055" target="_blank" >10.1016/j.irfa.2023.103055</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cryptocurrency price forecasting - A comparative analysis of ensemble learning and deep learning methods
Popis výsledku v původním jazyce
Cryptocurrency price forecasting is attracting considerable interest due to its crucial decision support role in investment strategies. Large fluctuations in non-stationary cryptocurrency prices motivate the urgent need for accurate forecasting models. The lack of seasonal effects and the need to meet a number of unrealistic re-quirements make it difficult to make accurate forecasts using traditional statistical methods, leaving machine learning, particularly ensemble and deep learning, as the best technology in the area of cryptocurrency price forecasting. This is the first work to provide a comprehensive comparative analysis of ensemble learning and deep learning forecasting models, examining their relative performance on various cryptocurrencies (Bitcoin, Ethereum, Ripple, and Litecoin) and exploring their potential trading applications. The results of this study reveal that gated recurrent unit, simple recurrent neural network, and LightGBM methods outperform other machine learning methods, as well as the naive buy-and-hold and random walk strategies. This can effectively guide investors in the cryptocurrency markets.
Název v anglickém jazyce
Cryptocurrency price forecasting - A comparative analysis of ensemble learning and deep learning methods
Popis výsledku anglicky
Cryptocurrency price forecasting is attracting considerable interest due to its crucial decision support role in investment strategies. Large fluctuations in non-stationary cryptocurrency prices motivate the urgent need for accurate forecasting models. The lack of seasonal effects and the need to meet a number of unrealistic re-quirements make it difficult to make accurate forecasts using traditional statistical methods, leaving machine learning, particularly ensemble and deep learning, as the best technology in the area of cryptocurrency price forecasting. This is the first work to provide a comprehensive comparative analysis of ensemble learning and deep learning forecasting models, examining their relative performance on various cryptocurrencies (Bitcoin, Ethereum, Ripple, and Litecoin) and exploring their potential trading applications. The results of this study reveal that gated recurrent unit, simple recurrent neural network, and LightGBM methods outperform other machine learning methods, as well as the naive buy-and-hold and random walk strategies. This can effectively guide investors in the cryptocurrency markets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Review of Financial Analysis
ISSN
1057-5219
e-ISSN
1873-8079
Svazek periodika
92
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
103055
Kód UT WoS článku
001165877200001
EID výsledku v databázi Scopus
2-s2.0-85181245581